Spaces:
Sleeping
Sleeping
Update pages/21_GraphRag.py
Browse files- pages/21_GraphRag.py +66 -1
pages/21_GraphRag.py
CHANGED
@@ -1 +1,66 @@
|
|
1 |
-
# put code here
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# put code here
|
2 |
+
|
3 |
+
import streamlit as st
|
4 |
+
import pandas as pd
|
5 |
+
from transformers import AutoTokenizer, AutoModel
|
6 |
+
from graphrag import GraphragModel, GraphragConfig
|
7 |
+
import torch
|
8 |
+
|
9 |
+
@st.cache_resource
|
10 |
+
def load_model():
|
11 |
+
bert_model_name = "bert-base-uncased"
|
12 |
+
tokenizer = AutoTokenizer.from_pretrained(bert_model_name)
|
13 |
+
bert_model = AutoModel.from_pretrained(bert_model_name)
|
14 |
+
|
15 |
+
config = GraphragConfig(
|
16 |
+
bert_model=bert_model,
|
17 |
+
num_labels=2, # Adjust based on your task
|
18 |
+
num_hidden_layers=2,
|
19 |
+
hidden_size=768,
|
20 |
+
intermediate_size=3072,
|
21 |
+
)
|
22 |
+
|
23 |
+
model = GraphragModel(config)
|
24 |
+
return tokenizer, model
|
25 |
+
|
26 |
+
def process_text(text, tokenizer, model):
|
27 |
+
inputs = tokenizer(text, return_tensors="pt", truncation=True, max_length=512)
|
28 |
+
with torch.no_grad():
|
29 |
+
outputs = model(**inputs)
|
30 |
+
# Process outputs based on your specific task
|
31 |
+
# This is a placeholder; adjust according to your model's output
|
32 |
+
logits = outputs.logits
|
33 |
+
probabilities = torch.softmax(logits, dim=1)
|
34 |
+
return probabilities.tolist()[0]
|
35 |
+
|
36 |
+
st.title("Graphrag Text Analysis")
|
37 |
+
|
38 |
+
tokenizer, model = load_model()
|
39 |
+
|
40 |
+
# File uploader
|
41 |
+
uploaded_file = st.file_uploader("Choose a CSV file", type="csv")
|
42 |
+
|
43 |
+
if uploaded_file is not None:
|
44 |
+
data = pd.read_csv(uploaded_file)
|
45 |
+
st.write(data.head())
|
46 |
+
|
47 |
+
if st.button("Process Data"):
|
48 |
+
results = []
|
49 |
+
for text in data['text']: # Assuming your CSV has a 'text' column
|
50 |
+
result = process_text(text, tokenizer, model)
|
51 |
+
results.append(result)
|
52 |
+
|
53 |
+
data['results'] = results
|
54 |
+
st.write(data)
|
55 |
+
|
56 |
+
# Text input for single prediction
|
57 |
+
text_input = st.text_area("Enter text for analysis:")
|
58 |
+
if st.button("Analyze Text"):
|
59 |
+
if text_input:
|
60 |
+
result = process_text(text_input, tokenizer, model)
|
61 |
+
st.write(f"Analysis Result: {result}")
|
62 |
+
else:
|
63 |
+
st.write("Please enter some text to analyze.")
|
64 |
+
|
65 |
+
# Add a link to sample data
|
66 |
+
st.markdown("[Download Sample CSV](https://raw.githubusercontent.com/your_username/your_repo/main/sample_data.csv)")
|