Spaces:
Sleeping
Sleeping
Update pages/21_GraphRag.py
Browse files- pages/21_GraphRag.py +18 -11
pages/21_GraphRag.py
CHANGED
@@ -1,19 +1,25 @@
|
|
1 |
import streamlit as st
|
2 |
import pandas as pd
|
3 |
-
from transformers import AutoTokenizer,
|
4 |
import torch
|
|
|
5 |
|
6 |
@st.cache_resource
|
7 |
def load_model():
|
8 |
bert_model_name = "bert-base-uncased"
|
9 |
tokenizer = AutoTokenizer.from_pretrained(bert_model_name)
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
|
|
|
|
|
|
|
|
|
|
17 |
# model.load_state_dict(torch.load('path_to_your_model.pth'))
|
18 |
|
19 |
return tokenizer, model
|
@@ -23,11 +29,12 @@ def process_text(text, tokenizer, model):
|
|
23 |
with torch.no_grad():
|
24 |
outputs = model(**inputs)
|
25 |
# Process outputs based on your specific task
|
26 |
-
|
|
|
27 |
probabilities = torch.softmax(logits, dim=1)
|
28 |
return probabilities.tolist()[0]
|
29 |
|
30 |
-
st.title("
|
31 |
|
32 |
tokenizer, model = load_model()
|
33 |
|
@@ -57,4 +64,4 @@ if st.button("Analyze Text"):
|
|
57 |
st.write("Please enter some text to analyze.")
|
58 |
|
59 |
# Add a link to sample data
|
60 |
-
st.markdown("[Download Sample CSV](https://raw.githubusercontent.com/your_username/your_repo/main/sample_data.csv)")
|
|
|
1 |
import streamlit as st
|
2 |
import pandas as pd
|
3 |
+
from transformers import AutoTokenizer, AutoModel
|
4 |
import torch
|
5 |
+
import graphrag
|
6 |
|
7 |
@st.cache_resource
|
8 |
def load_model():
|
9 |
bert_model_name = "bert-base-uncased"
|
10 |
tokenizer = AutoTokenizer.from_pretrained(bert_model_name)
|
11 |
+
bert_model = AutoModel.from_pretrained(bert_model_name)
|
12 |
+
|
13 |
+
# Initialize Graphrag model
|
14 |
+
model = graphrag.GraphRAG(
|
15 |
+
bert_model,
|
16 |
+
num_labels=2, # Adjust based on your task
|
17 |
+
num_hidden_layers=2,
|
18 |
+
hidden_size=768,
|
19 |
+
intermediate_size=3072,
|
20 |
+
)
|
21 |
+
|
22 |
+
# If you have a pre-trained Graphrag model, load it here
|
23 |
# model.load_state_dict(torch.load('path_to_your_model.pth'))
|
24 |
|
25 |
return tokenizer, model
|
|
|
29 |
with torch.no_grad():
|
30 |
outputs = model(**inputs)
|
31 |
# Process outputs based on your specific task
|
32 |
+
# This is a placeholder; adjust according to your model's output
|
33 |
+
logits = outputs.logits if hasattr(outputs, 'logits') else outputs
|
34 |
probabilities = torch.softmax(logits, dim=1)
|
35 |
return probabilities.tolist()[0]
|
36 |
|
37 |
+
st.title("Graphrag Text Analysis")
|
38 |
|
39 |
tokenizer, model = load_model()
|
40 |
|
|
|
64 |
st.write("Please enter some text to analyze.")
|
65 |
|
66 |
# Add a link to sample data
|
67 |
+
st.markdown("[Download Sample CSV](https://raw.githubusercontent.com/your_username/your_repo/main/sample_data.csv)")
|