eaglelandsonce commited on
Commit
731330d
·
verified ·
1 Parent(s): 5394934

Update pages/3_NumpyBasics.py

Browse files
Files changed (1) hide show
  1. pages/3_NumpyBasics.py +44 -23
pages/3_NumpyBasics.py CHANGED
@@ -1,123 +1,143 @@
1
  import streamlit as st
2
  import numpy as np
3
 
4
- # Example functions
5
  def example1():
 
6
  code = "import numpy as np"
7
  exec(code)
8
- return code
9
 
10
  def example2():
 
11
  code = "array = np.array([1, 2, 3, 4, 5])\narray"
12
  array = np.array([1, 2, 3, 4, 5])
13
- return code, array
14
 
15
  def example3():
 
16
  code = "array = np.arange(10)\narray"
17
  array = np.arange(10)
18
- return code, array
19
 
20
  def example4():
 
21
  code = "array = np.linspace(0, 1, 5)\narray"
22
  array = np.linspace(0, 1, 5)
23
- return code, array
24
 
25
  def example5():
 
26
  code = "array = np.array([[1, 2, 3], [4, 5, 6]])\nreshaped_array = array.reshape((3, 2))\nreshaped_array"
27
  array = np.array([[1, 2, 3], [4, 5, 6]])
28
  reshaped_array = array.reshape((3, 2))
29
- return code, reshaped_array
30
 
31
  def example6():
 
32
  code = "array = np.array([1, 2, 3, 4, 5])\narray[1:4]"
33
  array = np.array([1, 2, 3, 4, 5])
34
  sliced_array = array[1:4]
35
- return code, sliced_array
36
 
37
  def example7():
 
38
  code = "array = np.array([[1, 2], [3, 4], [5, 6]])\nfancy_indexed_array = array[[0, 1], [1, 0]]\nfancy_indexed_array"
39
  array = np.array([[1, 2], [3, 4], [5, 6]])
40
  fancy_indexed_array = array[[0, 1], [1, 0]]
41
- return code, fancy_indexed_array
42
 
43
  def example8():
 
44
  code = "array = np.array([1, 2, 3, 4, 5])\nboolean_indexed_array = array[array > 3]\nboolean_indexed_array"
45
  array = np.array([1, 2, 3, 4, 5])
46
  boolean_indexed_array = array[array > 3]
47
- return code, boolean_indexed_array
48
 
49
  def example9():
 
50
  code = "array = np.array([1, 2, 3, 4, 5])\narray * 2"
51
  array = np.array([1, 2, 3, 4, 5])
52
  result = array * 2
53
- return code, result
54
 
55
  def example10():
 
56
  code = "array = np.array([[1, 2, 3], [4, 5, 6]])\nnp.sum(array)"
57
  array = np.array([[1, 2, 3], [4, 5, 6]])
58
  result = np.sum(array)
59
- return code, result
60
 
61
  def example11():
 
62
  code = "matrix = np.array([[1, 2], [3, 4]])\nnp.dot(matrix, matrix)"
63
  matrix = np.array([[1, 2], [3, 4]])
64
  result = np.dot(matrix, matrix)
65
- return code, result
66
 
67
  def example12():
 
68
  code = "array = np.array([1, 2, 3])\narray + np.array([4, 5, 6])"
69
  array = np.array([1, 2, 3])
70
  result = array + np.array([4, 5, 6])
71
- return code, result
72
 
73
  def example13():
 
74
  code = "random_array = np.random.random((2, 2))\nrandom_array"
75
  random_array = np.random.random((2, 2))
76
- return code, random_array
77
 
78
  def example14():
 
79
  code = "array = np.array([3, 1, 2])\nnp.sort(array)"
80
  array = np.array([3, 1, 2])
81
  sorted_array = np.sort(array)
82
- return code, sorted_array
83
 
84
  def example15():
 
85
  code = "array = np.array([1, 2, 3, 4, 5])\nnp.searchsorted(array, 3)"
86
  array = np.array([1, 2, 3, 4, 5])
87
  index = np.searchsorted(array, 3)
88
- return code, index
89
 
90
  def example16():
91
  from skimage import data
 
92
  code = "from skimage import data\nimage = data.camera()\nnp.mean(image)"
93
  image = data.camera()
94
  mean_value = np.mean(image)
95
- return code, mean_value
96
 
97
  def example17():
 
98
  code = "positions = np.random.random((10, 2))\nvelocities = np.random.random((10, 2))\npositions + velocities"
99
  positions = np.random.random((10, 2))
100
  velocities = np.random.random((10, 2))
101
  result = positions + velocities
102
- return code, result
103
 
104
  def example18():
 
105
  code = "data = np.random.random((100, 4))\nnp.mean(data, axis=0)"
106
  data = np.random.random((100, 4))
107
  mean_values = np.mean(data, axis=0)
108
- return code, mean_values
109
 
110
  def example19():
 
111
  code = "array = np.array([1, 2, 3])\nnp.power(array, 3)"
112
  array = np.array([1, 2, 3])
113
  result = np.power(array, 3)
114
- return code, result
115
 
116
  def example20():
 
117
  code = "array = np.array([1, 2, 3, 4, 5])\nnp.cumsum(array)"
118
  array = np.array([1, 2, 3, 4, 5])
119
  result = np.cumsum(array)
120
- return code, result
121
 
122
  examples = [
123
  ("Example 1: Import NumPy", example1),
@@ -146,7 +166,8 @@ st.title("NumPy Course with Streamlit")
146
 
147
  for title, func in examples:
148
  st.header(title)
 
 
 
149
  if st.button(f"Run {title.split(':')[0]}"):
150
- code, result = func()
151
- st.code(code)
152
  st.write("Output:", result)
 
1
  import streamlit as st
2
  import numpy as np
3
 
4
+ # Example functions with explanations
5
  def example1():
6
+ explanation = "Importing the NumPy library."
7
  code = "import numpy as np"
8
  exec(code)
9
+ return explanation, code
10
 
11
  def example2():
12
+ explanation = "Creating a simple NumPy array."
13
  code = "array = np.array([1, 2, 3, 4, 5])\narray"
14
  array = np.array([1, 2, 3, 4, 5])
15
+ return explanation, code, array
16
 
17
  def example3():
18
+ explanation = "Creating an array with a range of values from 0 to 9."
19
  code = "array = np.arange(10)\narray"
20
  array = np.arange(10)
21
+ return explanation, code, array
22
 
23
  def example4():
24
+ explanation = "Creating an array with 5 evenly spaced values between 0 and 1."
25
  code = "array = np.linspace(0, 1, 5)\narray"
26
  array = np.linspace(0, 1, 5)
27
+ return explanation, code, array
28
 
29
  def example5():
30
+ explanation = "Reshaping a 2D array from shape (2, 3) to (3, 2)."
31
  code = "array = np.array([[1, 2, 3], [4, 5, 6]])\nreshaped_array = array.reshape((3, 2))\nreshaped_array"
32
  array = np.array([[1, 2, 3], [4, 5, 6]])
33
  reshaped_array = array.reshape((3, 2))
34
+ return explanation, code, reshaped_array
35
 
36
  def example6():
37
+ explanation = "Slicing a 1D array to get elements from index 1 to 3."
38
  code = "array = np.array([1, 2, 3, 4, 5])\narray[1:4]"
39
  array = np.array([1, 2, 3, 4, 5])
40
  sliced_array = array[1:4]
41
+ return explanation, code, sliced_array
42
 
43
  def example7():
44
+ explanation = "Using fancy indexing to select specific elements from a 2D array."
45
  code = "array = np.array([[1, 2], [3, 4], [5, 6]])\nfancy_indexed_array = array[[0, 1], [1, 0]]\nfancy_indexed_array"
46
  array = np.array([[1, 2], [3, 4], [5, 6]])
47
  fancy_indexed_array = array[[0, 1], [1, 0]]
48
+ return explanation, code, fancy_indexed_array
49
 
50
  def example8():
51
+ explanation = "Using boolean indexing to select elements greater than 3."
52
  code = "array = np.array([1, 2, 3, 4, 5])\nboolean_indexed_array = array[array > 3]\nboolean_indexed_array"
53
  array = np.array([1, 2, 3, 4, 5])
54
  boolean_indexed_array = array[array > 3]
55
+ return explanation, code, boolean_indexed_array
56
 
57
  def example9():
58
+ explanation = "Performing element-wise multiplication of a 1D array by 2."
59
  code = "array = np.array([1, 2, 3, 4, 5])\narray * 2"
60
  array = np.array([1, 2, 3, 4, 5])
61
  result = array * 2
62
+ return explanation, code, result
63
 
64
  def example10():
65
+ explanation = "Calculating the sum of all elements in a 2D array."
66
  code = "array = np.array([[1, 2, 3], [4, 5, 6]])\nnp.sum(array)"
67
  array = np.array([[1, 2, 3], [4, 5, 6]])
68
  result = np.sum(array)
69
+ return explanation, code, result
70
 
71
  def example11():
72
+ explanation = "Calculating the dot product of two matrices."
73
  code = "matrix = np.array([[1, 2], [3, 4]])\nnp.dot(matrix, matrix)"
74
  matrix = np.array([[1, 2], [3, 4]])
75
  result = np.dot(matrix, matrix)
76
+ return explanation, code, result
77
 
78
  def example12():
79
+ explanation = "Performing broadcasting by adding two 1D arrays element-wise."
80
  code = "array = np.array([1, 2, 3])\narray + np.array([4, 5, 6])"
81
  array = np.array([1, 2, 3])
82
  result = array + np.array([4, 5, 6])
83
+ return explanation, code, result
84
 
85
  def example13():
86
+ explanation = "Generating a 2x2 array with random values between 0 and 1."
87
  code = "random_array = np.random.random((2, 2))\nrandom_array"
88
  random_array = np.random.random((2, 2))
89
+ return explanation, code, random_array
90
 
91
  def example14():
92
+ explanation = "Sorting a 1D array in ascending order."
93
  code = "array = np.array([3, 1, 2])\nnp.sort(array)"
94
  array = np.array([3, 1, 2])
95
  sorted_array = np.sort(array)
96
+ return explanation, code, sorted_array
97
 
98
  def example15():
99
+ explanation = "Finding the index of a value in a sorted array."
100
  code = "array = np.array([1, 2, 3, 4, 5])\nnp.searchsorted(array, 3)"
101
  array = np.array([1, 2, 3, 4, 5])
102
  index = np.searchsorted(array, 3)
103
+ return explanation, code, index
104
 
105
  def example16():
106
  from skimage import data
107
+ explanation = "Calculating the mean value of an image."
108
  code = "from skimage import data\nimage = data.camera()\nnp.mean(image)"
109
  image = data.camera()
110
  mean_value = np.mean(image)
111
+ return explanation, code, mean_value
112
 
113
  def example17():
114
+ explanation = "Simulating random positions and velocities in a 2D space."
115
  code = "positions = np.random.random((10, 2))\nvelocities = np.random.random((10, 2))\npositions + velocities"
116
  positions = np.random.random((10, 2))
117
  velocities = np.random.random((10, 2))
118
  result = positions + velocities
119
+ return explanation, code, result
120
 
121
  def example18():
122
+ explanation = "Calculating the mean of each column in a 2D array."
123
  code = "data = np.random.random((100, 4))\nnp.mean(data, axis=0)"
124
  data = np.random.random((100, 4))
125
  mean_values = np.mean(data, axis=0)
126
+ return explanation, code, mean_values
127
 
128
  def example19():
129
+ explanation = "Calculating the element-wise power of a 1D array."
130
  code = "array = np.array([1, 2, 3])\nnp.power(array, 3)"
131
  array = np.array([1, 2, 3])
132
  result = np.power(array, 3)
133
+ return explanation, code, result
134
 
135
  def example20():
136
+ explanation = "Calculating the cumulative sum of a 1D array."
137
  code = "array = np.array([1, 2, 3, 4, 5])\nnp.cumsum(array)"
138
  array = np.array([1, 2, 3, 4, 5])
139
  result = np.cumsum(array)
140
+ return explanation, code, result
141
 
142
  examples = [
143
  ("Example 1: Import NumPy", example1),
 
166
 
167
  for title, func in examples:
168
  st.header(title)
169
+ explanation, code, result = func()
170
+ st.write(explanation)
171
+ st.code(code)
172
  if st.button(f"Run {title.split(':')[0]}"):
 
 
173
  st.write("Output:", result)