Spaces:
Sleeping
Sleeping
eaglelandsonce
commited on
Commit
•
79ac5ce
1
Parent(s):
ef623be
Create 21_NLP.py
Browse files- pages/21_NLP.py +98 -0
pages/21_NLP.py
ADDED
@@ -0,0 +1,98 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import tensorflow as tf
|
3 |
+
from transformers import BertTokenizer, TFBertForSequenceClassification
|
4 |
+
from tensorflow.keras.preprocessing.sequence import pad_sequences
|
5 |
+
import numpy as np
|
6 |
+
import matplotlib.pyplot as plt
|
7 |
+
from sklearn.model_selection import train_test_split
|
8 |
+
|
9 |
+
# Load the IMDb dataset
|
10 |
+
from datasets import load_dataset
|
11 |
+
|
12 |
+
# Load dataset
|
13 |
+
dataset = load_dataset("imdb")
|
14 |
+
|
15 |
+
# Split dataset into training and testing
|
16 |
+
train_data, test_data = train_test_split(dataset['train'].to_pandas(), test_size=0.2)
|
17 |
+
|
18 |
+
# Initialize the tokenizer
|
19 |
+
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
|
20 |
+
|
21 |
+
# Tokenization and padding
|
22 |
+
max_length = 128
|
23 |
+
|
24 |
+
def tokenize_and_pad(text):
|
25 |
+
tokens = tokenizer.encode_plus(
|
26 |
+
text,
|
27 |
+
max_length=max_length,
|
28 |
+
padding='max_length',
|
29 |
+
truncation=True,
|
30 |
+
return_tensors='tf'
|
31 |
+
)
|
32 |
+
return tokens['input_ids'], tokens['attention_mask']
|
33 |
+
|
34 |
+
# Preprocess the dataset
|
35 |
+
def preprocess_data(data):
|
36 |
+
input_ids = []
|
37 |
+
attention_masks = []
|
38 |
+
labels = []
|
39 |
+
for review, label in zip(data['text'], data['label']):
|
40 |
+
ids, mask = tokenize_and_pad(review)
|
41 |
+
input_ids.append(ids)
|
42 |
+
attention_masks.append(mask)
|
43 |
+
labels.append(label)
|
44 |
+
return np.array(input_ids), np.array(attention_masks), np.array(labels)
|
45 |
+
|
46 |
+
X_train_ids, X_train_mask, y_train = preprocess_data(train_data)
|
47 |
+
X_test_ids, X_test_mask, y_test = preprocess_data(test_data)
|
48 |
+
|
49 |
+
# Load the pre-trained BERT model
|
50 |
+
model = TFBertForSequenceClassification.from_pretrained('bert-base-uncased', num_labels=2)
|
51 |
+
|
52 |
+
# Build the Keras model
|
53 |
+
input_ids = tf.keras.Input(shape=(max_length,), dtype=tf.int32, name="input_ids")
|
54 |
+
attention_mask = tf.keras.Input(shape=(max_length,), dtype=tf.int32, name="attention_mask")
|
55 |
+
|
56 |
+
bert_outputs = model(input_ids, attention_mask=attention_mask)
|
57 |
+
outputs = tf.keras.layers.Dense(1, activation='sigmoid')(bert_outputs.logits)
|
58 |
+
|
59 |
+
model = tf.keras.Model(inputs=[input_ids, attention_mask], outputs=outputs)
|
60 |
+
|
61 |
+
model.summary()
|
62 |
+
|
63 |
+
# Compile the model
|
64 |
+
model.compile(optimizer=tf.keras.optimizers.Adam(learning_rate=3e-5),
|
65 |
+
loss='binary_crossentropy',
|
66 |
+
metrics=['accuracy'])
|
67 |
+
|
68 |
+
# Train the model
|
69 |
+
history = model.fit(
|
70 |
+
[X_train_ids, X_train_mask],
|
71 |
+
y_train,
|
72 |
+
validation_split=0.1,
|
73 |
+
epochs=3,
|
74 |
+
batch_size=32
|
75 |
+
)
|
76 |
+
|
77 |
+
# Evaluate the model
|
78 |
+
loss, accuracy = model.evaluate([X_test_ids, X_test_mask], y_test)
|
79 |
+
st.write(f'Test Accuracy: {accuracy}')
|
80 |
+
|
81 |
+
# Plot training & validation accuracy values
|
82 |
+
st.subheader("Training and Validation Accuracy")
|
83 |
+
fig, ax = plt.subplots()
|
84 |
+
ax.plot(history.history['accuracy'], label='Training Accuracy')
|
85 |
+
ax.plot(history.history['val_accuracy'], label='Validation Accuracy')
|
86 |
+
ax.set_xlabel('Epoch')
|
87 |
+
ax.set_ylabel('Accuracy')
|
88 |
+
ax.legend()
|
89 |
+
st.pyplot(fig)
|
90 |
+
|
91 |
+
st.subheader("Training and Validation Loss")
|
92 |
+
fig, ax = plt.subplots()
|
93 |
+
ax.plot(history.history['loss'], label='Training Loss')
|
94 |
+
ax.plot(history.history['val_loss'], label='Validation Loss')
|
95 |
+
ax.set_xlabel('Epoch')
|
96 |
+
ax.set_ylabel('Loss')
|
97 |
+
ax.legend()
|
98 |
+
st.pyplot(fig)
|