Spaces:
Sleeping
Sleeping
eaglelandsonce
commited on
Update pages/42_regression.py
Browse files- pages/42_regression.py +67 -37
pages/42_regression.py
CHANGED
@@ -1,49 +1,79 @@
|
|
1 |
-
import
|
2 |
-
import
|
|
|
|
|
|
|
|
|
3 |
|
4 |
-
#
|
5 |
-
|
|
|
|
|
6 |
|
7 |
-
#
|
8 |
-
|
9 |
-
w = st.sidebar.slider('W (slope)', min_value=-10.0, max_value=10.0, value=1.0, step=0.1)
|
10 |
-
b = st.sidebar.slider('B (intercept)', min_value=-100.0, max_value=100.0, value=0.0, step=1.0)
|
11 |
|
12 |
-
#
|
13 |
-
|
|
|
|
|
|
|
14 |
|
15 |
-
#
|
16 |
-
|
|
|
|
|
|
|
|
|
17 |
|
18 |
-
|
19 |
-
|
|
|
|
|
20 |
|
21 |
-
#
|
22 |
-
|
23 |
-
|
|
|
24 |
|
25 |
-
#
|
26 |
-
|
27 |
-
|
28 |
|
29 |
-
|
30 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
|
32 |
-
# Plot the
|
33 |
-
|
|
|
|
|
|
|
34 |
|
35 |
-
|
36 |
-
fig.update_layout(
|
37 |
-
title=f'y = {w} * x + {b}',
|
38 |
-
xaxis=dict(range=[-100, 100]),
|
39 |
-
yaxis=dict(range=[-2, 2], showticklabels=False),
|
40 |
-
showlegend=False,
|
41 |
-
height=400,
|
42 |
-
margin=dict(t=50, b=10)
|
43 |
-
)
|
44 |
|
45 |
-
#
|
46 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
|
48 |
-
#
|
49 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import matplotlib.pyplot as plt
|
3 |
+
import torch
|
4 |
+
import torch.nn as nn
|
5 |
+
import torch.optim as optim
|
6 |
+
from sklearn.model_selection import train_test_split
|
7 |
|
8 |
+
# Step 1: Create Synthetic Data
|
9 |
+
np.random.seed(42)
|
10 |
+
X = np.linspace(-10, 10, 1000)
|
11 |
+
y = 2.5 * X + np.random.normal(0, 2, X.shape) # Linear relation with noise
|
12 |
|
13 |
+
# Split into training and test sets
|
14 |
+
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
|
|
|
|
|
15 |
|
16 |
+
# Convert to PyTorch tensors
|
17 |
+
X_train = torch.tensor(X_train, dtype=torch.float32).view(-1, 1)
|
18 |
+
y_train = torch.tensor(y_train, dtype=torch.float32).view(-1, 1)
|
19 |
+
X_test = torch.tensor(X_test, dtype=torch.float32).view(-1, 1)
|
20 |
+
y_test = torch.tensor(y_test, dtype=torch.float32).view(-1, 1)
|
21 |
|
22 |
+
# Step 2: Define and Train a Neural Network Model
|
23 |
+
class SimpleNN(nn.Module):
|
24 |
+
def __init__(self):
|
25 |
+
super(SimpleNN, self).__init__()
|
26 |
+
self.fc1 = nn.Linear(1, 10)
|
27 |
+
self.fc2 = nn.Linear(10, 1)
|
28 |
|
29 |
+
def forward(self, x):
|
30 |
+
x = torch.relu(self.fc1(x))
|
31 |
+
x = self.fc2(x)
|
32 |
+
return x
|
33 |
|
34 |
+
# Initialize model, loss function, and optimizer
|
35 |
+
model = SimpleNN()
|
36 |
+
criterion = nn.MSELoss()
|
37 |
+
optimizer = optim.Adam(model.parameters(), lr=0.01)
|
38 |
|
39 |
+
# Training loop
|
40 |
+
epochs = 500
|
41 |
+
losses = []
|
42 |
|
43 |
+
for epoch in range(epochs):
|
44 |
+
model.train()
|
45 |
+
optimizer.zero_grad()
|
46 |
+
outputs = model(X_train)
|
47 |
+
loss = criterion(outputs, y_train)
|
48 |
+
loss.backward()
|
49 |
+
optimizer.step()
|
50 |
+
losses.append(loss.item())
|
51 |
+
if (epoch + 1) % 50 == 0:
|
52 |
+
print(f'Epoch [{epoch+1}/{epochs}], Loss: {loss.item():.4f}')
|
53 |
|
54 |
+
# Step 3: Plot the Results
|
55 |
+
# Plot the synthetic data and the model's predictions
|
56 |
+
model.eval()
|
57 |
+
with torch.no_grad():
|
58 |
+
predicted = model(X_test).numpy()
|
59 |
|
60 |
+
plt.figure(figsize=(12, 6))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
61 |
|
62 |
+
# Plot data and predictions
|
63 |
+
plt.subplot(1, 2, 1)
|
64 |
+
plt.scatter(X_test, y_test, label='Original data', alpha=0.5)
|
65 |
+
plt.scatter(X_test, predicted, label='Fitted line', alpha=0.5)
|
66 |
+
plt.title('Regression Results')
|
67 |
+
plt.xlabel('X')
|
68 |
+
plt.ylabel('y')
|
69 |
+
plt.legend()
|
70 |
|
71 |
+
# Plot training loss
|
72 |
+
plt.subplot(1, 2, 2)
|
73 |
+
plt.plot(losses)
|
74 |
+
plt.title('Training Loss')
|
75 |
+
plt.xlabel('Epoch')
|
76 |
+
plt.ylabel('Loss')
|
77 |
+
|
78 |
+
plt.tight_layout()
|
79 |
+
plt.show()
|