Spaces:
Sleeping
Sleeping
eaglelandsonce
commited on
Create 11_Cifar10_HF.py
Browse files- pages/11_Cifar10_HF.py +35 -0
pages/11_Cifar10_HF.py
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from transformers import ViTFeatureExtractor, ViTForImageClassification
|
3 |
+
from PIL import Image
|
4 |
+
import requests
|
5 |
+
import numpy as np
|
6 |
+
import torch
|
7 |
+
|
8 |
+
# Load pre-trained model and feature extractor
|
9 |
+
model_name = "google/vit-base-patch16-224"
|
10 |
+
feature_extractor = ViTFeatureExtractor.from_pretrained(model_name)
|
11 |
+
model = ViTForImageClassification.from_pretrained(model_name)
|
12 |
+
|
13 |
+
# CIFAR-10 class names
|
14 |
+
class_names = ['airplane', 'automobile', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck']
|
15 |
+
|
16 |
+
# Streamlit app
|
17 |
+
st.title("CIFAR-10 Image Classification with Pre-trained Vision Transformer")
|
18 |
+
|
19 |
+
# Prediction on uploaded image
|
20 |
+
st.subheader("Make Predictions")
|
21 |
+
uploaded_file = st.file_uploader("Upload an image", type=["jpg", "jpeg", "png"])
|
22 |
+
|
23 |
+
if uploaded_file is not None:
|
24 |
+
# Preprocess the uploaded image
|
25 |
+
image = Image.open(uploaded_file).convert("RGB")
|
26 |
+
st.image(image, caption='Uploaded Image', use_column_width=True)
|
27 |
+
|
28 |
+
inputs = feature_extractor(images=image, return_tensors="pt")
|
29 |
+
|
30 |
+
if st.button("Predict"):
|
31 |
+
with st.spinner("Classifying..."):
|
32 |
+
outputs = model(**inputs)
|
33 |
+
logits = outputs.logits
|
34 |
+
predicted_class_idx = logits.argmax(-1).item()
|
35 |
+
st.write(f"Predicted Class: {predicted_class_idx} ({class_names[predicted_class_idx]})")
|