eaglelandsonce commited on
Commit
cb8e67c
·
verified ·
1 Parent(s): da5d510

Update pages/1_NumpyBasics.py

Browse files
Files changed (1) hide show
  1. pages/1_NumpyBasics.py +45 -44
pages/1_NumpyBasics.py CHANGED
@@ -3,105 +3,100 @@ import numpy as np
3
 
4
  # Example functions with explanations
5
  def example1():
6
- explanation = "Importing the NumPy library."
7
- code = "import numpy as np"
8
- return explanation, code, None
9
-
10
- def example2():
11
- explanation = "Creating a simple NumPy array."
12
  code = "array = np.array([1, 2, 3, 4, 5])\narray"
13
  array = np.array([1, 2, 3, 4, 5])
14
  return explanation, code, array
15
 
16
- def example3():
17
  explanation = "Creating an array with a range of values from 0 to 9."
18
  code = "array = np.arange(10)\narray"
19
  array = np.arange(10)
20
  return explanation, code, array
21
 
22
- def example4():
23
  explanation = "Creating an array with 5 evenly spaced values between 0 and 1."
24
  code = "array = np.linspace(0, 1, 5)\narray"
25
  array = np.linspace(0, 1, 5)
26
  return explanation, code, array
27
 
28
- def example5():
29
  explanation = "Reshaping a 2D array from shape (2, 3) to (3, 2)."
30
  code = "array = np.array([[1, 2, 3], [4, 5, 6]])\nreshaped_array = array.reshape((3, 2))\nreshaped_array"
31
  array = np.array([[1, 2, 3], [4, 5, 6]])
32
  reshaped_array = array.reshape((3, 2))
33
  return explanation, code, reshaped_array
34
 
35
- def example6():
36
  explanation = "Slicing a 1D array to get elements from index 1 to 3."
37
  code = "array = np.array([1, 2, 3, 4, 5])\narray[1:4]"
38
  array = np.array([1, 2, 3, 4, 5])
39
  sliced_array = array[1:4]
40
  return explanation, code, sliced_array
41
 
42
- def example7():
43
  explanation = "Using fancy indexing to select specific elements from a 2D array."
44
  code = "array = np.array([[1, 2], [3, 4], [5, 6]])\nfancy_indexed_array = array[[0, 1], [1, 0]]\nfancy_indexed_array"
45
  array = np.array([[1, 2], [3, 4], [5, 6]])
46
  fancy_indexed_array = array[[0, 1], [1, 0]]
47
  return explanation, code, fancy_indexed_array
48
 
49
- def example8():
50
  explanation = "Using boolean indexing to select elements greater than 3."
51
  code = "array = np.array([1, 2, 3, 4, 5])\nboolean_indexed_array = array[array > 3]\nboolean_indexed_array"
52
  array = np.array([1, 2, 3, 4, 5])
53
  boolean_indexed_array = array[array > 3]
54
  return explanation, code, boolean_indexed_array
55
 
56
- def example9():
57
  explanation = "Performing element-wise multiplication of a 1D array by 2."
58
  code = "array = np.array([1, 2, 3, 4, 5])\narray * 2"
59
  array = np.array([1, 2, 3, 4, 5])
60
  result = array * 2
61
  return explanation, code, result
62
 
63
- def example10():
64
  explanation = "Calculating the sum of all elements in a 2D array."
65
  code = "array = np.array([[1, 2, 3], [4, 5, 6]])\nnp.sum(array)"
66
  array = np.array([[1, 2, 3], [4, 5, 6]])
67
  result = np.sum(array)
68
  return explanation, code, result
69
 
70
- def example11():
71
  explanation = "Calculating the dot product of two matrices."
72
  code = "matrix = np.array([[1, 2], [3, 4]])\nnp.dot(matrix, matrix)"
73
  matrix = np.array([[1, 2], [3, 4]])
74
  result = np.dot(matrix, matrix)
75
  return explanation, code, result
76
 
77
- def example12():
78
  explanation = "Performing broadcasting by adding two 1D arrays element-wise."
79
  code = "array = np.array([1, 2, 3])\narray + np.array([4, 5, 6])"
80
  array = np.array([1, 2, 3])
81
  result = array + np.array([4, 5, 6])
82
  return explanation, code, result
83
 
84
- def example13():
85
  explanation = "Generating a 2x2 array with random values between 0 and 1."
86
  code = "random_array = np.random.random((2, 2))\nrandom_array"
87
  random_array = np.random.random((2, 2))
88
  return explanation, code, random_array
89
 
90
- def example14():
91
  explanation = "Sorting a 1D array in ascending order."
92
  code = "array = np.array([3, 1, 2])\nnp.sort(array)"
93
  array = np.array([3, 1, 2])
94
  sorted_array = np.sort(array)
95
  return explanation, code, sorted_array
96
 
97
- def example15():
98
  explanation = "Finding the index of a value in a sorted array."
99
  code = "array = np.array([1, 2, 3, 4, 5])\nnp.searchsorted(array, 3)"
100
  array = np.array([1, 2, 3, 4, 5])
101
  index = np.searchsorted(array, 3)
102
  return explanation, code, index
103
 
104
- def example16():
105
  from skimage import data
106
  explanation = "Calculating the mean value of an image."
107
  code = "from skimage import data\nimage = data.camera()\nnp.mean(image)"
@@ -109,7 +104,7 @@ def example16():
109
  mean_value = np.mean(image)
110
  return explanation, code, mean_value
111
 
112
- def example17():
113
  explanation = "Simulating random positions and velocities in a 2D space."
114
  code = "positions = np.random.random((10, 2))\nvelocities = np.random.random((10, 2))\npositions + velocities"
115
  positions = np.random.random((10, 2))
@@ -117,48 +112,54 @@ def example17():
117
  result = positions + velocities
118
  return explanation, code, result
119
 
120
- def example18():
121
  explanation = "Calculating the mean of each column in a 2D array."
122
  code = "data = np.random.random((100, 4))\nnp.mean(data, axis=0)"
123
  data = np.random.random((100, 4))
124
  mean_values = np.mean(data, axis=0)
125
  return explanation, code, mean_values
126
 
127
- def example19():
128
  explanation = "Calculating the element-wise power of a 1D array."
129
  code = "array = np.array([1, 2, 3])\nnp.power(array, 3)"
130
  array = np.array([1, 2, 3])
131
  result = np.power(array, 3)
132
  return explanation, code, result
133
 
134
- def example20():
135
  explanation = "Calculating the cumulative sum of a 1D array."
136
  code = "array = np.array([1, 2, 3, 4, 5])\nnp.cumsum(array)"
137
  array = np.array([1, 2, 3, 4, 5])
138
  result = np.cumsum(array)
139
  return explanation, code, result
140
 
 
 
 
 
 
 
141
  examples = [
142
- ("Example 1: Import NumPy", example1),
143
- ("Example 2: Create a simple array", example2),
144
- ("Example 3: Create an array with a range of values", example3),
145
- ("Example 4: Create an array with evenly spaced values using linspace", example4),
146
- ("Example 5: Reshape a 2D array", example5),
147
- ("Example 6: Slice a 1D array", example6),
148
- ("Example 7: Fancy indexing on a 2D array", example7),
149
- ("Example 8: Boolean indexing on a 1D array", example8),
150
- ("Example 9: Element-wise multiplication", example9),
151
- ("Example 10: Sum of all elements in a 2D array", example10),
152
- ("Example 11: Dot product of two matrices", example11),
153
- ("Example 12: Broadcasting example", example12),
154
- ("Example 13: Generate random numbers", example13),
155
- ("Example 14: Sort an array", example14),
156
- ("Example 15: Search for a value in a sorted array", example15),
157
- ("Example 16: Mean value of an image", example16),
158
- ("Example 17: Numerical simulation with random positions and velocities", example17),
159
- ("Example 18: Mean of each column in a 2D array", example18),
160
- ("Example 19: Element-wise power", example19),
161
- ("Example 20: Cumulative sum of an array", example20),
162
  ]
163
 
164
  st.title("NumPy Course with Streamlit")
 
3
 
4
  # Example functions with explanations
5
  def example1():
6
+ explanation = "Creating a simple 1D NumPy array."
 
 
 
 
 
7
  code = "array = np.array([1, 2, 3, 4, 5])\narray"
8
  array = np.array([1, 2, 3, 4, 5])
9
  return explanation, code, array
10
 
11
+ def example2():
12
  explanation = "Creating an array with a range of values from 0 to 9."
13
  code = "array = np.arange(10)\narray"
14
  array = np.arange(10)
15
  return explanation, code, array
16
 
17
+ def example3():
18
  explanation = "Creating an array with 5 evenly spaced values between 0 and 1."
19
  code = "array = np.linspace(0, 1, 5)\narray"
20
  array = np.linspace(0, 1, 5)
21
  return explanation, code, array
22
 
23
+ def example4():
24
  explanation = "Reshaping a 2D array from shape (2, 3) to (3, 2)."
25
  code = "array = np.array([[1, 2, 3], [4, 5, 6]])\nreshaped_array = array.reshape((3, 2))\nreshaped_array"
26
  array = np.array([[1, 2, 3], [4, 5, 6]])
27
  reshaped_array = array.reshape((3, 2))
28
  return explanation, code, reshaped_array
29
 
30
+ def example5():
31
  explanation = "Slicing a 1D array to get elements from index 1 to 3."
32
  code = "array = np.array([1, 2, 3, 4, 5])\narray[1:4]"
33
  array = np.array([1, 2, 3, 4, 5])
34
  sliced_array = array[1:4]
35
  return explanation, code, sliced_array
36
 
37
+ def example6():
38
  explanation = "Using fancy indexing to select specific elements from a 2D array."
39
  code = "array = np.array([[1, 2], [3, 4], [5, 6]])\nfancy_indexed_array = array[[0, 1], [1, 0]]\nfancy_indexed_array"
40
  array = np.array([[1, 2], [3, 4], [5, 6]])
41
  fancy_indexed_array = array[[0, 1], [1, 0]]
42
  return explanation, code, fancy_indexed_array
43
 
44
+ def example7():
45
  explanation = "Using boolean indexing to select elements greater than 3."
46
  code = "array = np.array([1, 2, 3, 4, 5])\nboolean_indexed_array = array[array > 3]\nboolean_indexed_array"
47
  array = np.array([1, 2, 3, 4, 5])
48
  boolean_indexed_array = array[array > 3]
49
  return explanation, code, boolean_indexed_array
50
 
51
+ def example8():
52
  explanation = "Performing element-wise multiplication of a 1D array by 2."
53
  code = "array = np.array([1, 2, 3, 4, 5])\narray * 2"
54
  array = np.array([1, 2, 3, 4, 5])
55
  result = array * 2
56
  return explanation, code, result
57
 
58
+ def example9():
59
  explanation = "Calculating the sum of all elements in a 2D array."
60
  code = "array = np.array([[1, 2, 3], [4, 5, 6]])\nnp.sum(array)"
61
  array = np.array([[1, 2, 3], [4, 5, 6]])
62
  result = np.sum(array)
63
  return explanation, code, result
64
 
65
+ def example10():
66
  explanation = "Calculating the dot product of two matrices."
67
  code = "matrix = np.array([[1, 2], [3, 4]])\nnp.dot(matrix, matrix)"
68
  matrix = np.array([[1, 2], [3, 4]])
69
  result = np.dot(matrix, matrix)
70
  return explanation, code, result
71
 
72
+ def example11():
73
  explanation = "Performing broadcasting by adding two 1D arrays element-wise."
74
  code = "array = np.array([1, 2, 3])\narray + np.array([4, 5, 6])"
75
  array = np.array([1, 2, 3])
76
  result = array + np.array([4, 5, 6])
77
  return explanation, code, result
78
 
79
+ def example12():
80
  explanation = "Generating a 2x2 array with random values between 0 and 1."
81
  code = "random_array = np.random.random((2, 2))\nrandom_array"
82
  random_array = np.random.random((2, 2))
83
  return explanation, code, random_array
84
 
85
+ def example13():
86
  explanation = "Sorting a 1D array in ascending order."
87
  code = "array = np.array([3, 1, 2])\nnp.sort(array)"
88
  array = np.array([3, 1, 2])
89
  sorted_array = np.sort(array)
90
  return explanation, code, sorted_array
91
 
92
+ def example14():
93
  explanation = "Finding the index of a value in a sorted array."
94
  code = "array = np.array([1, 2, 3, 4, 5])\nnp.searchsorted(array, 3)"
95
  array = np.array([1, 2, 3, 4, 5])
96
  index = np.searchsorted(array, 3)
97
  return explanation, code, index
98
 
99
+ def example15():
100
  from skimage import data
101
  explanation = "Calculating the mean value of an image."
102
  code = "from skimage import data\nimage = data.camera()\nnp.mean(image)"
 
104
  mean_value = np.mean(image)
105
  return explanation, code, mean_value
106
 
107
+ def example16():
108
  explanation = "Simulating random positions and velocities in a 2D space."
109
  code = "positions = np.random.random((10, 2))\nvelocities = np.random.random((10, 2))\npositions + velocities"
110
  positions = np.random.random((10, 2))
 
112
  result = positions + velocities
113
  return explanation, code, result
114
 
115
+ def example17():
116
  explanation = "Calculating the mean of each column in a 2D array."
117
  code = "data = np.random.random((100, 4))\nnp.mean(data, axis=0)"
118
  data = np.random.random((100, 4))
119
  mean_values = np.mean(data, axis=0)
120
  return explanation, code, mean_values
121
 
122
+ def example18():
123
  explanation = "Calculating the element-wise power of a 1D array."
124
  code = "array = np.array([1, 2, 3])\nnp.power(array, 3)"
125
  array = np.array([1, 2, 3])
126
  result = np.power(array, 3)
127
  return explanation, code, result
128
 
129
+ def example19():
130
  explanation = "Calculating the cumulative sum of a 1D array."
131
  code = "array = np.array([1, 2, 3, 4, 5])\nnp.cumsum(array)"
132
  array = np.array([1, 2, 3, 4, 5])
133
  result = np.cumsum(array)
134
  return explanation, code, result
135
 
136
+ def example20():
137
+ explanation = "Generating a 3x3 identity matrix."
138
+ code = "identity_matrix = np.eye(3)\nidentity_matrix"
139
+ identity_matrix = np.eye(3)
140
+ return explanation, code, identity_matrix
141
+
142
  examples = [
143
+ ("Example 1: Create a simple NumPy array", example1),
144
+ ("Example 2: Create an array with a range of values", example2),
145
+ ("Example 3: Create an array with evenly spaced values using linspace", example3),
146
+ ("Example 4: Reshape a 2D array", example4),
147
+ ("Example 5: Slice a 1D array", example5),
148
+ ("Example 6: Fancy indexing on a 2D array", example6),
149
+ ("Example 7: Boolean indexing on a 1D array", example7),
150
+ ("Example 8: Element-wise multiplication", example8),
151
+ ("Example 9: Sum of all elements in a 2D array", example9),
152
+ ("Example 10: Dot product of two matrices", example10),
153
+ ("Example 11: Broadcasting example", example11),
154
+ ("Example 12: Generate random numbers", example12),
155
+ ("Example 13: Sort an array", example13),
156
+ ("Example 14: Search for a value in a sorted array", example14),
157
+ ("Example 15: Mean value of an image", example15),
158
+ ("Example 16: Numerical simulation with random positions and velocities", example16),
159
+ ("Example 17: Mean of each column in a 2D array", example17),
160
+ ("Example 18: Element-wise power", example18),
161
+ ("Example 19: Cumulative sum of an array", example19),
162
+ ("Example 20: Generate a 3x3 identity matrix", example20),
163
  ]
164
 
165
  st.title("NumPy Course with Streamlit")