Spaces:
Sleeping
Sleeping
eaglelandsonce
commited on
Commit
•
f2036f2
1
Parent(s):
a982b06
Create 13_TransferLearning.py
Browse files- pages/13_TransferLearning.py +104 -0
pages/13_TransferLearning.py
ADDED
@@ -0,0 +1,104 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import tensorflow as tf
|
3 |
+
from tensorflow.keras import layers, models, applications
|
4 |
+
from tensorflow.keras.preprocessing.image import ImageDataGenerator
|
5 |
+
import matplotlib.pyplot as plt
|
6 |
+
import numpy as np
|
7 |
+
|
8 |
+
# Set dataset paths
|
9 |
+
train_dir = 'data/train'
|
10 |
+
validation_dir = 'data/validation'
|
11 |
+
|
12 |
+
# Streamlit app
|
13 |
+
st.title("Transfer Learning with VGG16 for Image Classification")
|
14 |
+
|
15 |
+
# Input parameters
|
16 |
+
batch_size = st.slider("Batch Size", 16, 128, 32, 16)
|
17 |
+
epochs = st.slider("Epochs", 5, 50, 10, 5)
|
18 |
+
|
19 |
+
# Data augmentation and preprocessing
|
20 |
+
train_datagen = ImageDataGenerator(
|
21 |
+
rescale=1./255,
|
22 |
+
rotation_range=40,
|
23 |
+
width_shift_range=0.2,
|
24 |
+
height_shift_range=0.2,
|
25 |
+
shear_range=0.2,
|
26 |
+
zoom_range=0.2,
|
27 |
+
horizontal_flip=True,
|
28 |
+
fill_mode='nearest'
|
29 |
+
)
|
30 |
+
|
31 |
+
validation_datagen = ImageDataGenerator(rescale=1./255)
|
32 |
+
|
33 |
+
train_generator = train_datagen.flow_from_directory(
|
34 |
+
train_dir,
|
35 |
+
target_size=(150, 150),
|
36 |
+
batch_size=batch_size,
|
37 |
+
class_mode='binary'
|
38 |
+
)
|
39 |
+
|
40 |
+
validation_generator = validation_datagen.flow_from_directory(
|
41 |
+
validation_dir,
|
42 |
+
target_size=(150, 150),
|
43 |
+
batch_size=batch_size,
|
44 |
+
class_mode='binary'
|
45 |
+
)
|
46 |
+
|
47 |
+
# Load the pre-trained VGG16 model
|
48 |
+
base_model = applications.VGG16(weights='imagenet', include_top=False, input_shape=(150, 150, 3))
|
49 |
+
|
50 |
+
# Freeze the convolutional base
|
51 |
+
base_model.trainable = False
|
52 |
+
|
53 |
+
# Add custom layers on top
|
54 |
+
model = models.Sequential([
|
55 |
+
base_model,
|
56 |
+
layers.Flatten(),
|
57 |
+
layers.Dense(256, activation='relu'),
|
58 |
+
layers.Dropout(0.5),
|
59 |
+
layers.Dense(1, activation='sigmoid') # Change the output layer based on the number of classes
|
60 |
+
])
|
61 |
+
|
62 |
+
model.summary()
|
63 |
+
|
64 |
+
# Compile the model
|
65 |
+
model.compile(optimizer='adam',
|
66 |
+
loss='binary_crossentropy', # Change loss function based on the number of classes
|
67 |
+
metrics=['accuracy'])
|
68 |
+
|
69 |
+
# Train the model
|
70 |
+
if st.button("Train Model"):
|
71 |
+
with st.spinner("Training the model..."):
|
72 |
+
history = model.fit(
|
73 |
+
train_generator,
|
74 |
+
steps_per_epoch=train_generator.samples // train_generator.batch_size,
|
75 |
+
epochs=epochs,
|
76 |
+
validation_data=validation_generator,
|
77 |
+
validation_steps=validation_generator.samples // validation_generator.batch_size
|
78 |
+
)
|
79 |
+
|
80 |
+
st.success("Model training completed!")
|
81 |
+
|
82 |
+
# Display training curves
|
83 |
+
st.subheader("Training and Validation Accuracy")
|
84 |
+
fig, ax = plt.subplots()
|
85 |
+
ax.plot(history.history['accuracy'], label='Training Accuracy')
|
86 |
+
ax.plot(history.history['val_accuracy'], label='Validation Accuracy')
|
87 |
+
ax.set_xlabel('Epoch')
|
88 |
+
ax.set_ylabel('Accuracy')
|
89 |
+
ax.legend()
|
90 |
+
st.pyplot(fig)
|
91 |
+
|
92 |
+
st.subheader("Training and Validation Loss")
|
93 |
+
fig, ax = plt.subplots()
|
94 |
+
ax.plot(history.history['loss'], label='Training Loss')
|
95 |
+
ax.plot(history.history['val_loss'], label='Validation Loss')
|
96 |
+
ax.set_xlabel('Epoch')
|
97 |
+
ax.set_ylabel('Loss')
|
98 |
+
ax.legend()
|
99 |
+
st.pyplot(fig)
|
100 |
+
|
101 |
+
# Evaluate the model
|
102 |
+
if st.button("Evaluate Model"):
|
103 |
+
test_loss, test_acc = model.evaluate(validation_generator, verbose=2)
|
104 |
+
st.write(f"Validation accuracy: {test_acc}")
|