Spaces:
Sleeping
Sleeping
Delete pages/21_GraphRag.py
Browse files- pages/21_GraphRag.py +0 -82
pages/21_GraphRag.py
DELETED
@@ -1,82 +0,0 @@
|
|
1 |
-
import streamlit as st
|
2 |
-
import graphrag
|
3 |
-
import networkx as nx
|
4 |
-
import matplotlib.pyplot as plt
|
5 |
-
from sentence_transformers import SentenceTransformer
|
6 |
-
import torch
|
7 |
-
import nltk
|
8 |
-
from nltk.tokenize import sent_tokenize, word_tokenize
|
9 |
-
nltk.download('punkt', quiet=True)
|
10 |
-
|
11 |
-
@st.cache_resource
|
12 |
-
def load_models():
|
13 |
-
# Load SentenceTransformer model for sentence embeddings
|
14 |
-
sentence_model = SentenceTransformer('all-MiniLM-L6-v2')
|
15 |
-
return sentence_model
|
16 |
-
|
17 |
-
def text_to_graph(text, sentence_model):
|
18 |
-
# Tokenize text into sentences
|
19 |
-
sentences = sent_tokenize(text)
|
20 |
-
|
21 |
-
# Create graph
|
22 |
-
G = nx.Graph()
|
23 |
-
|
24 |
-
# Add nodes (sentences) to the graph
|
25 |
-
for i, sentence in enumerate(sentences):
|
26 |
-
embedding = sentence_model.encode(sentence)
|
27 |
-
G.add_node(i, text=sentence, embedding=embedding)
|
28 |
-
|
29 |
-
# Add edges between sentences based on cosine similarity
|
30 |
-
for i in range(len(sentences)):
|
31 |
-
for j in range(i+1, len(sentences)):
|
32 |
-
similarity = torch.cosine_similarity(
|
33 |
-
torch.tensor(G.nodes[i]['embedding']),
|
34 |
-
torch.tensor(G.nodes[j]['embedding']),
|
35 |
-
dim=0
|
36 |
-
)
|
37 |
-
if similarity > 0.5: # Adjust this threshold as needed
|
38 |
-
G.add_edge(i, j, weight=similarity.item())
|
39 |
-
|
40 |
-
return G, sentences
|
41 |
-
|
42 |
-
def analyze_text(text, sentence_model):
|
43 |
-
G, sentences = text_to_graph(text, sentence_model)
|
44 |
-
|
45 |
-
# Basic graph analysis
|
46 |
-
num_nodes = G.number_of_nodes()
|
47 |
-
num_edges = G.number_of_edges()
|
48 |
-
avg_degree = sum(dict(G.degree()).values()) / num_nodes
|
49 |
-
|
50 |
-
# Identify important sentences using PageRank
|
51 |
-
pagerank = nx.pagerank(G)
|
52 |
-
important_sentences = sorted(pagerank, key=pagerank.get, reverse=True)[:3]
|
53 |
-
|
54 |
-
return G, sentences, num_nodes, num_edges, avg_degree, important_sentences
|
55 |
-
|
56 |
-
st.title("GraphRAG-based Text Analysis")
|
57 |
-
|
58 |
-
sentence_model = load_models()
|
59 |
-
|
60 |
-
text_input = st.text_area("Enter text for analysis:", height=200)
|
61 |
-
|
62 |
-
if st.button("Analyze Text"):
|
63 |
-
if text_input:
|
64 |
-
G, sentences, num_nodes, num_edges, avg_degree, important_sentences = analyze_text(text_input, sentence_model)
|
65 |
-
|
66 |
-
st.write(f"Number of sentences: {num_nodes}")
|
67 |
-
st.write(f"Number of connections: {num_edges}")
|
68 |
-
st.write(f"Average connections per sentence: {avg_degree:.2f}")
|
69 |
-
|
70 |
-
st.subheader("Most important sentences:")
|
71 |
-
for i in important_sentences:
|
72 |
-
st.write(f"- {sentences[i]}")
|
73 |
-
|
74 |
-
# Visualize graph
|
75 |
-
plt.figure(figsize=(10, 6))
|
76 |
-
pos = nx.spring_layout(G)
|
77 |
-
nx.draw(G, pos, with_labels=False, node_size=30, node_color='lightblue', edge_color='gray')
|
78 |
-
plt.title("Text as Graph")
|
79 |
-
st.pyplot(plt)
|
80 |
-
|
81 |
-
else:
|
82 |
-
st.write("Please enter some text to analyze.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|