import streamlit as st import numpy as np import pandas as pd import matplotlib.pyplot as plt from tensorflow.keras.preprocessing.text import Tokenizer from tensorflow.keras.preprocessing.sequence import pad_sequences from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Embedding, LSTM, Dense, SpatialDropout1D from tensorflow.keras.callbacks import EarlyStopping from sklearn.model_selection import train_test_split from sklearn.metrics import accuracy_score, confusion_matrix from tensorflow.keras.datasets import imdb # Load the dataset (X_train, y_train), (X_test, y_test) = imdb.load_data(num_words=5000) # Data Preprocessing max_words = 500 max_len = 500 embedding_dim = 128 X_train = pad_sequences(X_train, maxlen=max_len) X_test = pad_sequences(X_test, maxlen=max_len) # Build the Model model = Sequential() model.add(Embedding(input_dim=5000, output_dim=embedding_dim, input_length=max_len)) model.add(SpatialDropout1D(0.2)) model.add(LSTM(100, dropout=0.2, recurrent_dropout=0.2)) model.add(Dense(1, activation='sigmoid')) model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy']) # Train the Model X_train_partial, X_val, y_train_partial, y_val = train_test_split(X_train, y_train, test_size=0.2, random_state=42) early_stopping = EarlyStopping(monitor='val_loss', patience=3, restore_best_weights=True) history = model.fit(X_train_partial, y_train_partial, epochs=10, batch_size=64, validation_data=(X_val, y_val), callbacks=[early_stopping]) # Evaluate the Model loss, accuracy = model.evaluate(X_test, y_test) st.write(f'Test Accuracy: {accuracy:.4f}') # Plotting functions def plot_accuracy(history): plt.plot(history.history['accuracy']) plt.plot(history.history['val_accuracy']) plt.title('Model accuracy') plt.ylabel('Accuracy') plt.xlabel('Epoch') plt.legend(['Train', 'Validation'], loc='upper left') st.pyplot(plt) def plot_loss(history): plt.plot(history.history['loss']) plt.plot(history.history['val_loss']) plt.title('Model loss') plt.ylabel('Loss') plt.xlabel('Epoch') plt.legend(['Train', 'Validation'], loc='upper left') st.pyplot(plt) # Display plots plot_accuracy(history) plot_loss(history) # Text Input and Prediction st.header("Movie Review Sentiment Analysis") review_input = st.text_area("Enter your movie review:", "This movie was fantastic! I loved it.") # Tokenization and padding tokenizer = Tokenizer(num_words=5000) tokenizer.fit_on_texts(review_input) review_seq = tokenizer.texts_to_sequences([review_input]) review_pad = pad_sequences(review_seq, maxlen=max_len) # Prediction if st.button("Classify Review"): prediction = (model.predict(review_pad) > 0.5).astype("int32") sentiment = "Positive" if prediction[0][0] == 1 else "Negative" st.write(f'Sentiment: **{sentiment}**')