import torch from transformers import AutoTokenizer, AutoModel from sentence_transformers import SentenceTransformer import networkx as nx import matplotlib.pyplot as plt # Load pre-trained model and tokenizer model_name = "bert-base-uncased" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModel.from_pretrained(model_name) # Function to get embeddings def get_embeddings(texts): inputs = tokenizer(texts, return_tensors="pt", padding=True, truncation=True, max_length=512) with torch.no_grad(): outputs = model(**inputs) return outputs.last_hidden_state[:, 0, :].numpy() # Sample data (replace with your own data import) documents = [ "The quick brown fox jumps over the lazy dog.", "A journey of a thousand miles begins with a single step.", "To be or not to be, that is the question.", "All that glitters is not gold.", ] # Get embeddings for documents embeddings = get_embeddings(documents) # Create graph G = nx.Graph() # Add nodes and edges based on cosine similarity threshold = 0.5 # Adjust this threshold as needed for i in range(len(documents)): G.add_node(i, text=documents[i]) for j in range(i+1, len(documents)): similarity = torch.cosine_similarity(torch.tensor(embeddings[i]), torch.tensor(embeddings[j]), dim=0) if similarity > threshold: G.add_edge(i, j, weight=similarity.item()) # Visualize the graph pos = nx.spring_layout(G) nx.draw(G, pos, with_labels=True, node_color='lightblue', node_size=500, font_size=8, font_weight='bold') edge_labels = nx.get_edge_attributes(G, 'weight') nx.draw_networkx_edge_labels(G, pos, edge_labels=edge_labels) plt.title("Document Similarity Graph") plt.show() # Example of querying the graph query = "What is the meaning of life?" query_embedding = get_embeddings([query])[0] # Find most similar document similarities = [torch.cosine_similarity(torch.tensor(query_embedding), torch.tensor(emb), dim=0) for emb in embeddings] most_similar_idx = max(range(len(similarities)), key=similarities.__getitem__) print(f"Most similar document to the query: {documents[most_similar_idx]}") # You can extend this to implement more complex graph-based retrieval algorithms