import streamlit as st from transformers import GraphormerForGraphClassification, GraphormerTokenizer from datasets import Dataset from transformers.models.graphormer.collating_graphormer import preprocess_item, GraphormerDataCollator import torch import networkx as nx import matplotlib.pyplot as plt from collections import Counter @st.cache_resource def load_model(): model = GraphormerForGraphClassification.from_pretrained( "clefourrier/pcqm4mv2_graphormer_base", num_classes=2, # Binary classification (positive/negative sentiment) ignore_mismatched_sizes=True, ) tokenizer = GraphormerTokenizer.from_pretrained("clefourrier/pcqm4mv2_graphormer_base") return model, tokenizer def text_to_graph(text): words = text.split() G = nx.Graph() for i, word in enumerate(words): G.add_node(i, word=word) if i > 0: G.add_edge(i-1, i) edge_index = [[e[0] for e in G.edges()] + [e[1] for e in G.edges()], [e[1] for e in G.edges()] + [e[0] for e in G.edges()]] return { "edge_index": edge_index, "num_nodes": len(G.nodes()), "node_feat": [[ord(word[0])] for word in words], # Use ASCII value of first letter as feature "edge_attr": [[1] for _ in range(len(G.edges()) * 2)], # All edges have the same attribute "y": [1] # Placeholder label, will be ignored during inference } def analyze_text(text, model, tokenizer): graph = text_to_graph(text) dataset = Dataset.from_dict({"train": [graph]}) dataset_processed = dataset.map(preprocess_item, batched=False) inputs = GraphormerDataCollator()(dataset_processed["train"]) inputs = {k: v.to(model.device) for k, v in inputs.items()} with torch.no_grad(): outputs = model(**inputs) logits = outputs.logits probabilities = torch.softmax(logits, dim=1) sentiment = "Positive" if probabilities[0][1] > probabilities[0][0] else "Negative" confidence = probabilities[0][1].item() if sentiment == "Positive" else probabilities[0][0].item() return sentiment, confidence, graph st.title("Graph-based Text Analysis") model, tokenizer = load_model() text_input = st.text_area("Enter text for analysis:", height=200) if st.button("Analyze Text"): if text_input: sentiment, confidence, graph = analyze_text(text_input, model, tokenizer) st.write(f"Sentiment: {sentiment}") st.write(f"Confidence: {confidence:.2f}") # Additional analysis word_count = len(text_input.split()) st.write(f"Word count: {word_count}") # Most common words words = [word.lower() for word in text_input.split() if word.isalnum()] word_freq = Counter(words).most_common(5) st.write("Top 5 most common words:") for word, freq in word_freq: st.write(f"- {word}: {freq}") # Visualize graph G = nx.Graph() G.add_edges_from(zip(graph["edge_index"][0], graph["edge_index"][1])) plt.figure(figsize=(10, 6)) nx.draw(G, with_labels=False, node_size=30, node_color='lightblue', edge_color='gray') plt.title("Text as Graph") st.pyplot(plt) else: st.write("Please enter some text to analyze.")