import streamlit as st from transformers import ViTFeatureExtractor, ViTForImageClassification from PIL import Image import torch # Load pre-trained model and feature extractor for CIFAR-10 model_name = "aaraki/vit-base-patch16-224-in21k-finetuned-cifar10" feature_extractor = ViTFeatureExtractor.from_pretrained(model_name) model = ViTForImageClassification.from_pretrained(model_name) # CIFAR-10 class names class_names = ['airplane', 'automobile', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck'] # Streamlit app st.title("CIFAR-10 Image Classification with Pre-trained Vision Transformer") # Prediction on uploaded image st.subheader("Make Predictions") uploaded_file = st.file_uploader("Upload an image", type=["jpg", "jpeg", "png"]) if uploaded_file is not None: # Preprocess the uploaded image image = Image.open(uploaded_file).convert("RGB") st.image(image, caption='Uploaded Image', use_column_width=True) inputs = feature_extractor(images=image, return_tensors="pt") if st.button("Predict"): with st.spinner("Classifying..."): outputs = model(**inputs) logits = outputs.logits predicted_class_idx = logits.argmax(-1).item() # Check if the predicted_class_idx is within bounds if 0 <= predicted_class_idx < len(class_names): st.write(f"Predicted Class: {predicted_class_idx} ({class_names[predicted_class_idx]})") else: st.error("Prediction index out of range.")