import streamlit as st import tensorflow as tf import tensorflow_gnn as tfgnn from tensorflow_gnn.models import mt_albis import networkx as nx import matplotlib.pyplot as plt # Set environment variable for legacy Keras import os os.environ['TF_USE_LEGACY_KERAS'] = '1' # Define the model function def model_fn(graph_tensor_spec: tfgnn.GraphTensorSpec): graph = inputs = tf.keras.Input(type_spec=graph_tensor_spec) # Encode input features to match the required output shape of 128 graph = tfgnn.keras.layers.MapFeatures( node_sets_fn=lambda node_set, node_set_name: tf.keras.layers.Dense(128)(node_set['features']) )(graph) # For each round of message passing... for _ in range(2): # ... create and apply a Keras layer. graph = mt_albis.MtAlbisGraphUpdate( units=128, message_dim=64, attention_type="none", simple_conv_reduce_type="mean", normalization_type="layer", next_state_type="residual", state_dropout_rate=0.2, l2_regularization=1e-5, receiver_tag=tfgnn.TARGET # Use TARGET instead of NODES )(graph) return tf.keras.Model(inputs, graph) # Function to create a sample graph def create_sample_graph(): num_nodes = 10 num_edges = 15 graph = nx.gnm_random_graph(num_nodes, num_edges, directed=True) # Create a GraphTensor node_features = tf.random.normal((num_nodes, 128)) # Match the dense layer output edge_features = tf.random.normal((num_edges, 32)) graph_tensor = tfgnn.GraphTensor.from_pieces( node_sets={ "papers": tfgnn.NodeSet.from_fields( sizes=[num_nodes], features={"features": node_features} ) }, edge_sets={ "cites": tfgnn.EdgeSet.from_fields( sizes=[num_edges], adjacency=tfgnn.Adjacency.from_indices( source=("papers", tf.constant([e[0] for e in graph.edges()], dtype=tf.int32)), target=("papers", tf.constant([e[1] for e in graph.edges()], dtype=tf.int32)) ), features={"features": edge_features} ) } ) return graph, graph_tensor # Streamlit app def main(): st.title("Graph Neural Network Architecture Visualization") # Create sample graph nx_graph, graph_tensor = create_sample_graph() # Create and compile the model model = model_fn(graph_tensor.spec) model.compile(optimizer='adam', loss='binary_crossentropy') # Display model summary st.subheader("Model Summary") model.summary(print_fn=lambda x: st.text(x)) # Visualize the graph st.subheader("Sample Graph Visualization") fig, ax = plt.subplots(figsize=(10, 8)) pos = nx.spring_layout(nx_graph) nx.draw(nx_graph, pos, with_labels=True, node_color='lightblue', node_size=500, arrowsize=20, ax=ax) st.pyplot(fig) # Display graph tensor info st.subheader("Graph Tensor Information") st.text(f"Number of nodes: {graph_tensor.node_sets['papers'].total_size}") st.text(f"Number of edges: {graph_tensor.edge_sets['cites'].total_size}") st.text(f"Node feature shape: {graph_tensor.node_sets['papers']['features'].shape}") st.text(f"Edge feature shape: {graph_tensor.edge_sets['cites']['features'].shape}") if __name__ == "__main__": main()