import streamlit as st import tensorflow as tf import tensorflow_gnn as tfgnn from tensorflow_gnn.models import mt_albis import networkx as nx import matplotlib.pyplot as plt import numpy as np # Set environment variable for legacy Keras import os os.environ['TF_USE_LEGACY_KERAS'] = '1' # Define the model function def model_fn(graph_tensor_spec: tfgnn.GraphTensorSpec): graph = inputs = tf.keras.Input(type_spec=graph_tensor_spec) # Encode input features to match the required output shape of 128 graph = tfgnn.keras.layers.MapFeatures( node_sets_fn=lambda node_set, node_set_name: tf.keras.layers.Dense(128)(node_set['features']) )(graph) # For each round of message passing... for _ in range(2): # ... create and apply a Keras layer. graph = mt_albis.MtAlbisGraphUpdate( units=128, message_dim=64, attention_type="none", simple_conv_reduce_type="mean", normalization_type="layer", next_state_type="residual", state_dropout_rate=0.2, l2_regularization=1e-5, receiver_tag=tfgnn.TARGET # Use TARGET instead of NODES )(graph) return tf.keras.Model(inputs, graph) # Function to create a sample graph with meaningful synthetic data def create_sample_graph(): num_nodes = 10 num_edges = 15 # Create a random graph graph = nx.gnm_random_graph(num_nodes, num_edges, directed=True) # Generate synthetic features years_published = np.random.randint(1990, 2022, size=num_nodes).astype(np.float32) num_authors = np.random.randint(1, 10, size=num_nodes).astype(np.float32) citation_weights = np.random.uniform(0.1, 5.0, size=num_edges).astype(np.float32) # Combine features into a single array per node node_features = np.stack([years_published, num_authors], axis=-1) edge_features = citation_weights.reshape(-1, 1) # Assign random titles to nodes paper_titles = [f"Paper {i+1}" for i in range(num_nodes)] nx.set_node_attributes(graph, {i: {'title': title} for i, title in enumerate(paper_titles)}) graph_tensor = tfgnn.GraphTensor.from_pieces( node_sets={ "papers": tfgnn.NodeSet.from_fields( sizes=[num_nodes], features={"features": tf.convert_to_tensor(node_features)} ) }, edge_sets={ "cites": tfgnn.EdgeSet.from_fields( sizes=[num_edges], adjacency=tfgnn.Adjacency.from_indices( source=("papers", tf.constant([e[0] for e in graph.edges()], dtype=tf.int32)), target=("papers", tf.constant([e[1] for e in graph.edges()], dtype=tf.int32)) ), features={"features": tf.convert_to_tensor(edge_features)} ) } ) return graph, graph_tensor, node_features, edge_features # Streamlit app def main(): st.title("Graph Neural Network Architecture Visualization") if st.button("Recreate Graph"): recreate_graph = True else: recreate_graph = False if recreate_graph: # Create sample graph nx_graph, graph_tensor, node_features, edge_features = create_sample_graph() # Create and compile the model model = model_fn(graph_tensor.spec) model.compile(optimizer='adam', loss='binary_crossentropy') # Display model summary st.subheader("Model Summary") model.summary(print_fn=lambda x: st.text(x)) # Visualize the graph st.subheader("Sample Graph Visualization") fig, ax = plt.subplots(figsize=(10, 8)) pos = nx.spring_layout(nx_graph) labels = nx.get_node_attributes(nx_graph, 'title') nx.draw(nx_graph, pos, labels=labels, with_labels=True, node_color='lightblue', node_size=3000, arrowsize=20, ax=ax) # Increased node_size to 3000 st.pyplot(fig) # Display graph tensor info st.subheader("Graph Tensor Information") st.text(f"Number of nodes: {graph_tensor.node_sets['papers'].total_size}") st.text(f"Number of edges: {graph_tensor.edge_sets['cites'].total_size}") st.text(f"Node feature shape: {graph_tensor.node_sets['papers']['features'].shape}") st.text(f"Edge feature shape: {graph_tensor.edge_sets['cites']['features'].shape}") # Display sample node and edge features st.subheader("Sample Node and Edge Features") st.write("Node Features (Year Published, Number of Authors):") st.write(node_features) st.write("Edge Features (Citation Weight):") st.write(edge_features) if __name__ == "__main__": main()