import streamlit as st import numpy as np import pandas as pd import tensorflow as tf from matplotlib import pyplot as plt # Function to build the model def build_model(my_learning_rate): model = tf.keras.models.Sequential() model.add(tf.keras.layers.Dense(units=1, input_shape=(1,))) model.compile(optimizer=tf.keras.optimizers.RMSprop(learning_rate=my_learning_rate), loss='mean_squared_error', metrics=[tf.keras.metrics.RootMeanSquaredError()]) return model # Function to train the model def train_model(model, feature, label, epochs, batch_size): history = model.fit(x=feature, y=label, batch_size=batch_size, epochs=epochs) trained_weight = model.get_weights()[0][0] trained_bias = model.get_weights()[1] epochs = history.epoch hist = pd.DataFrame(history.history) rmse = hist["root_mean_squared_error"] return trained_weight, trained_bias, epochs, rmse # Function to plot the model def plot_the_model(trained_weight, trained_bias, feature, label): plt.figure(figsize=(10, 6)) plt.xlabel('Feature') plt.ylabel('Label') # Plot the feature values vs. label values plt.scatter(feature, label, c='b') # Create a red line representing the model x0 = 0 y0 = trained_bias x1 = feature[-1][0] y1 = trained_bias + (trained_weight * x1) plt.plot([x0, x1], [y0, y1], c='r') st.pyplot(plt) # Function to plot the loss curve def plot_the_loss_curve(epochs, rmse): plt.figure(figsize=(10, 6)) plt.xlabel('Epoch') plt.ylabel('Root Mean Squared Error') plt.plot(epochs, rmse, label='Loss') plt.legend() plt.ylim([rmse.min()*0.97, rmse.max()]) st.pyplot(plt) # Define the dataset my_feature = np.array([1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0], dtype=float).reshape(-1, 1) my_label = np.array([5.0, 8.8, 9.6, 14.2, 18.8, 19.5, 21.4, 26.8, 28.9, 32.0, 33.8, 38.2], dtype=float) # Streamlit interface st.title("Simple Linear Regression with Synthetic Data") st.write("https://colab.research.google.com/github/google/eng-edu/blob/main/ml/cc/exercises/linear_regression_with_synthetic_data.ipynb?utm_source=mlcc&utm_campaign=colab-external&utm_medium=referral&utm_content=linear_regression_synthetic_tf2-colab&hl=en") learning_rate = st.sidebar.slider('Learning Rate', min_value=0.001, max_value=1.0, value=0.01, step=0.01) epochs = st.sidebar.slider('Epochs', min_value=1, max_value=1000, value=10, step=1) batch_size = st.sidebar.slider('Batch Size', min_value=1, max_value=len(my_feature), value=12, step=1) if st.sidebar.button('Run'): my_model = build_model(learning_rate) trained_weight, trained_bias, epochs, rmse = train_model(my_model, my_feature, my_label, epochs, batch_size) st.subheader('Model Plot') plot_the_model(trained_weight, trained_bias, my_feature, my_label) st.subheader('Loss Curve') plot_the_loss_curve(epochs, rmse)