import streamlit as st import numpy as np import pandas as pd import tensorflow as tf from matplotlib import pyplot as plt # Function to build the model def build_model(my_learning_rate): model = tf.keras.models.Sequential() model.add(tf.keras.layers.Dense(units=1, input_shape=(1,))) model.compile(optimizer=tf.keras.optimizers.RMSprop(learning_rate=my_learning_rate), loss='mean_squared_error', metrics=[tf.keras.metrics.RootMeanSquaredError()]) return model # Function to train the model def train_model(model, df, feature, label, epochs, batch_size): history = model.fit(x=df[feature], y=df[label], batch_size=batch_size, epochs=epochs) trained_weight = model.get_weights()[0][0] trained_bias = model.get_weights()[1] epochs = history.epoch hist = pd.DataFrame(history.history) rmse = hist["root_mean_squared_error"] return trained_weight, trained_bias, epochs, rmse # Function to plot the model def plot_the_model(trained_weight, trained_bias, feature, label, df): plt.figure(figsize=(10, 6)) plt.xlabel(feature) plt.ylabel(label) random_examples = df.sample(n=200) plt.scatter(random_examples[feature], random_examples[label]) x0 = 0 y0 = trained_bias x1 = random_examples[feature].max() y1 = trained_bias + (trained_weight * x1) plt.plot([x0, x1], [y0, y1], c='r') st.pyplot(plt) # Function to plot the loss curve def plot_the_loss_curve(epochs, rmse): plt.figure(figsize=(10, 6)) plt.xlabel("Epoch") plt.ylabel("Root Mean Squared Error") plt.plot(epochs, rmse, label="Loss") plt.legend() plt.ylim([rmse.min()*0.97, rmse.max()]) st.pyplot(plt) # Load the dataset @st.cache_data def load_data(): url = "https://download.mlcc.google.com/mledu-datasets/california_housing_train.csv" df = pd.read_csv(url) df["median_house_value"] /= 1000.0 return df training_df = load_data() # Streamlit interface st.title("Simple Linear Regression with Real Data") st.write("https://colab.research.google.com/github/google/eng-edu/blob/main/ml/cc/exercises/linear_regression_with_a_real_dataset.ipynb?utm_source=mlcc&utm_campaign=colab-external&utm_medium=referral&utm_content=linear_regression_real_tf2-colab&hl=en") if st.checkbox('Show raw data'): st.write(training_df.head()) learning_rate = st.sidebar.slider('Learning Rate', min_value=0.001, max_value=1.0, value=0.01, step=0.01) epochs = st.sidebar.slider('Epochs', min_value=1, max_value=1000, value=30, step=1) batch_size = st.sidebar.slider('Batch Size', min_value=1, max_value=len(training_df), value=30, step=1) feature = st.sidebar.selectbox('Select Feature', training_df.columns) label = 'median_house_value' my_model = None # Initialize the model variable if st.sidebar.button('Run'): my_model = build_model(learning_rate) weight, bias, epochs, rmse = train_model(my_model, training_df, feature, label, epochs, batch_size) st.subheader('Model Plot') plot_the_model(weight, bias, feature, label, training_df) st.subheader('Loss Curve') plot_the_loss_curve(epochs, rmse) # Function to make predictions def predict_house_values(n, feature, label): batch = training_df[feature][10000:10000 + n] predicted_values = my_model.predict_on_batch(x=batch) st.write("feature label predicted") st.write(" value value value") st.write(" in thousand$ in thousand$") st.write("--------------------------------------") for i in range(n): st.write("%5.0f %6.0f %15.0f" % (training_df[feature][10000 + i], training_df[label][10000 + i], predicted_values[i][0] )) n_predictions = st.sidebar.slider('Number of Predictions', min_value=1, max_value=100, value=10) if my_model is not None and st.sidebar.button('Predict'): st.subheader('Predictions') predict_house_values(n_predictions, feature, label)