import streamlit as st # Set the title of the page st.title("TensorFlow and Keras Course Overview") # Introduction section st.header("1. Introduction to TensorFlow and Keras") st.subheader("Example: Build a simple linear regression model to predict house prices") st.markdown(""" **Concepts Covered:** - Basic TensorFlow and Keras syntax - Linear regression - Mean squared error """) # Building and Training a Simple Neural Network section st.header("2. Building and Training a Simple Neural Network") st.subheader("Example: Create a neural network to classify handwritten digits from the MNIST dataset") st.markdown(""" **Concepts Covered:** - Dense layers - Activation functions - Training loops - Evaluation """) # Convolutional Neural Networks (CNNs) section st.header("3. Convolutional Neural Networks (CNNs)") st.subheader("Example: Develop a CNN to classify images from the CIFAR-10 dataset") st.markdown(""" **Concepts Covered:** - Convolutional layers - Pooling layers - Data augmentation - Dropout """) # Transfer Learning section st.header("4. Transfer Learning") st.subheader("Example: Use a pre-trained model (e.g., VGG16) for image classification on a custom dataset") st.markdown(""" **Concepts Covered:** - Transfer learning - Fine-tuning - Feature extraction """) # Recurrent Neural Networks (RNNs) section st.header("5. Recurrent Neural Networks (RNNs)") st.subheader("Example: Build an RNN to predict stock prices based on historical data") st.markdown(""" **Concepts Covered:** - Recurrent layers - LSTM - GRU - Time series forecasting """) # Natural Language Processing (NLP) with Keras section st.header("6. Natural Language Processing (NLP) with Keras") st.subheader("Example: Create a text classification model to classify movie reviews as positive or negative") st.markdown(""" **Concepts Covered:** - Tokenization - Embedding layers - Sequence padding - Sentiment analysis """) # Autoencoders for Anomaly Detection section st.header("7. Autoencoders for Anomaly Detection") st.subheader("Example: Implement an autoencoder to detect anomalies in credit card transactions") st.markdown(""" **Concepts Covered:** - Encoder-decoder architecture - Reconstruction loss - Anomaly detection """) # Generative Adversarial Networks (GANs) section st.header("8. Generative Adversarial Networks (GANs)") st.subheader("Example: Develop a GAN to generate synthetic images of handwritten digits") st.markdown(""" **Concepts Covered:** - Generator and discriminator networks - Adversarial training - Loss functions """) # Hyperparameter Tuning with Keras Tuner section st.header("9. Hyperparameter Tuning with Keras Tuner") st.subheader("Example: Use Keras Tuner to optimize hyperparameters for a neural network model") st.markdown(""" **Concepts Covered:** - Hyperparameter tuning - Keras Tuner API - Performance optimization """) # Deploying a TensorFlow Model section st.header("10. Deploying a TensorFlow Model") st.subheader("Example: Deploy a trained model as a web service using TensorFlow Serving and create a simple web app to interact with it") st.markdown(""" **Concepts Covered:** - Model saving and loading - TensorFlow Serving - REST API - Deployment """)