Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,198 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import io
|
3 |
+
import uuid
|
4 |
+
import re
|
5 |
+
import tempfile
|
6 |
+
from typing import Optional, List
|
7 |
+
|
8 |
+
import gradio as gr
|
9 |
+
|
10 |
+
# --- File reading ---
|
11 |
+
def read_text_from_file(file_obj) -> str:
|
12 |
+
if file_obj is None:
|
13 |
+
return ""
|
14 |
+
name = getattr(file_obj, "name", "")
|
15 |
+
if not name:
|
16 |
+
return ""
|
17 |
+
|
18 |
+
ext = os.path.splitext(name)[1].lower()
|
19 |
+
if ext == ".txt":
|
20 |
+
return file_obj.read().decode("utf-8", errors="ignore")
|
21 |
+
elif ext == ".docx":
|
22 |
+
# lazy import to keep startup snappy
|
23 |
+
import docx
|
24 |
+
d = docx.Document(file_obj)
|
25 |
+
return "\n".join([p.text for p in d.paragraphs]).strip()
|
26 |
+
else:
|
27 |
+
raise gr.Error("Unsupported file type. Please upload .txt or .docx")
|
28 |
+
|
29 |
+
# --- Chunking utility (keeps sentences intact, ~350-500 chars each) ---
|
30 |
+
_SENT_SPLIT = re.compile(r"(?<=[\.\!\?\:\;\n])\s+")
|
31 |
+
|
32 |
+
def chunk_text(text: str, max_len: int = 450) -> List[str]:
|
33 |
+
# Fast path
|
34 |
+
if len(text) <= max_len:
|
35 |
+
return [text.strip()]
|
36 |
+
|
37 |
+
sentences = [s.strip() for s in _SENT_SPLIT.split(text) if s.strip()]
|
38 |
+
chunks, cur = [], ""
|
39 |
+
for s in sentences:
|
40 |
+
if len(cur) + 1 + len(s) <= max_len:
|
41 |
+
cur = f"{cur} {s}".strip() if cur else s
|
42 |
+
else:
|
43 |
+
if cur:
|
44 |
+
chunks.append(cur)
|
45 |
+
# very long single sentence fallback
|
46 |
+
if len(s) > max_len:
|
47 |
+
for i in range(0, len(s), max_len):
|
48 |
+
chunks.append(s[i:i+max_len])
|
49 |
+
cur = ""
|
50 |
+
else:
|
51 |
+
cur = s
|
52 |
+
if cur:
|
53 |
+
chunks.append(cur)
|
54 |
+
return chunks
|
55 |
+
|
56 |
+
# --- Lazy TTS loader (Coqui XTTS v2) ---
|
57 |
+
_TTS = None
|
58 |
+
_SR = 22050 # default; will be overwritten after first load if available
|
59 |
+
|
60 |
+
def get_tts():
|
61 |
+
global _TTS, _SR
|
62 |
+
if _TTS is None:
|
63 |
+
from TTS.api import TTS
|
64 |
+
# Multilingual, high-quality, supports voice cloning via reference audio
|
65 |
+
_TTS = TTS("tts_models/multilingual/multi-dataset/xtts_v2")
|
66 |
+
try:
|
67 |
+
_SR = getattr(_TTS, "output_sample_rate", 24000) or 24000
|
68 |
+
except Exception:
|
69 |
+
_SR = 24000
|
70 |
+
return _TTS
|
71 |
+
|
72 |
+
# --- Synthesis core ---
|
73 |
+
def synthesize(
|
74 |
+
text_input: str,
|
75 |
+
file_input,
|
76 |
+
language: str,
|
77 |
+
voice_ref, # optional reference audio for cloning
|
78 |
+
) -> str:
|
79 |
+
# Collect text from inputs
|
80 |
+
user_text = (text_input or "").strip()
|
81 |
+
file_text = read_text_from_file(file_input) if file_input else ""
|
82 |
+
final_text = (user_text + "\n" + file_text).strip()
|
83 |
+
|
84 |
+
if not final_text:
|
85 |
+
raise gr.Error("Please paste/type text or upload a .txt/.docx file.")
|
86 |
+
|
87 |
+
# Clean + limit length to something reasonable for demo
|
88 |
+
final_text = re.sub(r"\s+", " ", final_text).strip()
|
89 |
+
if len(final_text) > 20000:
|
90 |
+
final_text = final_text[:20000] + " ..."
|
91 |
+
|
92 |
+
# Prepare chunks
|
93 |
+
chunks = chunk_text(final_text, max_len=480)
|
94 |
+
|
95 |
+
# TTS model
|
96 |
+
tts = get_tts()
|
97 |
+
|
98 |
+
# Target WAV path
|
99 |
+
out_path = os.path.join(tempfile.gettempdir(), f"tts_{uuid.uuid4().hex}.wav")
|
100 |
+
|
101 |
+
# Synthesize and append to a single WAV
|
102 |
+
import soundfile as sf
|
103 |
+
import numpy as np
|
104 |
+
|
105 |
+
# Create/overwrite file
|
106 |
+
with sf.SoundFile(out_path, mode="w", samplerate=_SR, channels=1, subtype="PCM_16") as f:
|
107 |
+
for i, chunk in enumerate(chunks, start=1):
|
108 |
+
# If a reference voice is provided, use it
|
109 |
+
speaker_wav = None
|
110 |
+
if voice_ref is not None:
|
111 |
+
try:
|
112 |
+
speaker_wav = voice_ref.name # temp file path provided by Gradio
|
113 |
+
except Exception:
|
114 |
+
speaker_wav = None
|
115 |
+
|
116 |
+
# Generate audio as numpy array
|
117 |
+
audio = tts.tts(
|
118 |
+
text=chunk,
|
119 |
+
language=language,
|
120 |
+
speaker_wav=speaker_wav, # None => default voice
|
121 |
+
)
|
122 |
+
# Ensure mono float32/float64 -> int16
|
123 |
+
audio = np.asarray(audio).flatten()
|
124 |
+
# Normalize if needed
|
125 |
+
if audio.dtype != np.float32 and audio.dtype != np.float64:
|
126 |
+
audio = audio.astype("float32")
|
127 |
+
# write chunk
|
128 |
+
f.write(audio)
|
129 |
+
|
130 |
+
return out_path
|
131 |
+
|
132 |
+
# --- Gradio UI ---
|
133 |
+
LANG_OPTIONS = [
|
134 |
+
("English", "en"),
|
135 |
+
("Spanish", "es"),
|
136 |
+
("French", "fr"),
|
137 |
+
("German", "de"),
|
138 |
+
("Italian", "it"),
|
139 |
+
("Portuguese", "pt"),
|
140 |
+
("Polish", "pl"),
|
141 |
+
("Turkish", "tr"),
|
142 |
+
("Russian", "ru"),
|
143 |
+
("Dutch", "nl"),
|
144 |
+
("Chinese", "zh-cn"),
|
145 |
+
("Japanese", "ja"),
|
146 |
+
("Korean", "ko"),
|
147 |
+
("Arabic", "ar"),
|
148 |
+
]
|
149 |
+
|
150 |
+
with gr.Blocks(title="High-Quality TTS (XTTS v2)") as demo:
|
151 |
+
gr.Markdown(
|
152 |
+
"""
|
153 |
+
# 🔊 High-Quality Text-to-Speech
|
154 |
+
- **Upload** a `.docx` or `.txt`, **or** paste/type text.
|
155 |
+
- Optionally **clone a voice** by uploading a short (10–30s) reference `.wav`.
|
156 |
+
- Choose a **language**, then click **Generate Audio**.
|
157 |
+
"""
|
158 |
+
)
|
159 |
+
with gr.Row():
|
160 |
+
text_in = gr.Textbox(
|
161 |
+
label="Type or paste text",
|
162 |
+
lines=8,
|
163 |
+
placeholder="Paste text here… (you can also upload a .docx/.txt below)",
|
164 |
+
)
|
165 |
+
with gr.Row():
|
166 |
+
file_in = gr.File(
|
167 |
+
label="Drag & drop .docx or .txt (optional)",
|
168 |
+
file_types=[".docx", ".txt"],
|
169 |
+
)
|
170 |
+
with gr.Row():
|
171 |
+
voice_ref = gr.File(
|
172 |
+
label="Optional: Voice reference (.wav, 10–30s) for cloning",
|
173 |
+
file_types=[".wav"],
|
174 |
+
visible=True,
|
175 |
+
)
|
176 |
+
lang = gr.Dropdown(
|
177 |
+
choices=[v for _, v in LANG_OPTIONS],
|
178 |
+
value="en",
|
179 |
+
label="Language",
|
180 |
+
info="XTTS v2 is multilingual; pick what fits your input.",
|
181 |
+
)
|
182 |
+
|
183 |
+
btn = gr.Button("🎙️ Generate Audio", variant="primary")
|
184 |
+
audio_out = gr.Audio(label="Result", type="filepath", autoplay=True)
|
185 |
+
download = gr.File(label="Download WAV")
|
186 |
+
|
187 |
+
def run(text_input, file_input, language, voice_ref_file):
|
188 |
+
path = synthesize(text_input, file_input, language, voice_ref_file)
|
189 |
+
return path, path
|
190 |
+
|
191 |
+
btn.click(
|
192 |
+
run,
|
193 |
+
inputs=[text_in, file_in, lang, voice_ref],
|
194 |
+
outputs=[audio_out, download],
|
195 |
+
)
|
196 |
+
|
197 |
+
if __name__ == "__main__":
|
198 |
+
demo.launch()
|