Spaces:
Runtime error
Runtime error
import sys | |
import json | |
import autogen | |
from autogen import config_list_from_json | |
# Function to run the query | |
def run_query(programming_problem, api_key): | |
config_list = [ | |
{ | |
'model': 'gpt-3.5-turbo', | |
'api_key': api_key, | |
}, | |
] | |
llm_config = {"config_list": config_list, "seed": 42, "request_timeout": 120} | |
autogen.ChatCompletion.start_logging() | |
# Create user proxy agent, coder, product manager | |
user_proxy = autogen.UserProxyAgent( | |
name="User_proxy", | |
system_message="A human admin who will give the idea and run the code provided by Coder.", | |
code_execution_config={"last_n_messages": 2, "work_dir": "groupchat"}, | |
human_input_mode="NEVER", | |
) | |
coder = autogen.AssistantAgent( | |
name="Coder", | |
llm_config=llm_config, | |
) | |
pm = autogen.AssistantAgent( | |
name="product_manager", | |
system_message="You will help break down the initial idea into a well scoped requirement for the coder; Do not involve in future conversations or error fixing", | |
llm_config=llm_config, | |
) | |
# Create groupchat | |
groupchat = autogen.GroupChat( | |
agents=[user_proxy, coder, pm], messages=[]) | |
manager = autogen.GroupChatManager(groupchat=groupchat, llm_config=llm_config) | |
return user_proxy.initiate_chat(manager, message=programming_problem) | |
if __name__ == "__main__": | |
input_data = json.loads(sys.stdin.read()) | |
programming_problem = input_data['programming_problem'] | |
api_key = input_data['api_key'] | |
result = run_query(programming_problem, api_key) | |
print(result) |