File size: 8,075 Bytes
de0d854
 
 
 
e84d316
713f0f4
e84d316
 
de0d854
 
 
 
e84d316
 
de0d854
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
713f0f4
 
 
 
 
 
 
de0d854
 
 
e84d316
 
de0d854
e84d316
 
 
 
713f0f4
e84d316
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
de0d854
 
e84d316
 
 
 
 
de0d854
 
 
 
 
 
 
e84d316
 
de0d854
e84d316
 
de0d854
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e84d316
 
 
 
de0d854
 
e84d316
 
 
de0d854
 
 
 
 
 
 
713f0f4
 
 
e84d316
de0d854
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e84d316
de0d854
 
 
 
 
 
 
 
 
 
e84d316
de0d854
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e84d316
de0d854
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e84d316
 
 
de0d854
 
 
 
 
e84d316
de0d854
 
 
713f0f4
de0d854
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
import streamlit as st
import torch
import torch.nn as nn
import torch.optim as optim
from torchtext.data.utils import get_tokenizer
from torchtext.vocab import build_vocab_from_iterator
from torchtext.datasets import IMDB
from torch.utils.data import DataLoader, random_split
import matplotlib.pyplot as plt
import seaborn as sns
import pandas as pd
import numpy as np
from collections import Counter
from torch.nn.utils.rnn import pad_sequence

# Define the RNN model
class RNN(nn.Module):
    def __init__(self, vocab_size, embed_size, hidden_size, output_size, n_layers, dropout):
        super(RNN, self).__init__()
        self.embedding = nn.Embedding(vocab_size, embed_size)
        self.rnn = nn.RNN(embed_size, hidden_size, n_layers, dropout=dropout, batch_first=True)
        self.fc = nn.Linear(hidden_size, output_size)
        self.dropout = nn.Dropout(dropout)

    def forward(self, x):
        x = self.dropout(self.embedding(x))
        h0 = torch.zeros(n_layers, x.size(0), hidden_size).to(device)
        out, _ = self.rnn(x, h0)
        out = self.fc(out[:, -1, :])
        return out

# Create a custom collate function to pad sequences
def collate_batch(batch):
    texts, labels = zip(*batch)
    text_lengths = [len(text) for text in texts]
    texts_padded = pad_sequence(texts, batch_first=True, padding_value=vocab["<pad>"])
    return texts_padded, torch.tensor(labels, dtype=torch.float), text_lengths

# Function to load the data
@st.cache_data
def load_data():
    tokenizer = get_tokenizer("basic_english")
    train_iter, test_iter = IMDB(split=('train', 'test'))

    def yield_tokens(data_iter):
        for _, text in data_iter:
            yield tokenizer(text)
    
    vocab = build_vocab_from_iterator(yield_tokens(train_iter), specials=["<unk>", "<pad>"])
    vocab.set_default_index(vocab["<unk>"])

    # Define the text and label processing pipelines
    text_pipeline = lambda x: vocab(tokenizer(x))
    label_pipeline = lambda x: 1 if x == 'pos' else 0

    # Process the data into tensors
    def process_data(data_iter):
        texts, labels = [], []
        for label, text in data_iter:
            texts.append(torch.tensor(text_pipeline(text), dtype=torch.long))
            labels.append(label_pipeline(label))
        return texts, torch.tensor(labels, dtype=torch.float)

    train_texts, train_labels = process_data(train_iter)
    test_texts, test_labels = process_data(test_iter)

    # Create DataLoaders
    train_dataset = list(zip(train_texts, train_labels))
    test_dataset = list(zip(test_texts, test_labels))

    train_size = int(0.8 * len(train_dataset))
    valid_size = len(train_dataset) - train_size
    train_dataset, valid_dataset = random_split(train_dataset, [train_size, valid_size])

    BATCH_SIZE = 64
    train_loader = DataLoader(train_dataset, batch_size=BATCH_SIZE, shuffle=True, collate_fn=collate_batch)
    valid_loader = DataLoader(valid_dataset, batch_size=BATCH_SIZE, shuffle=True, collate_fn=collate_batch)
    test_loader = DataLoader(test_dataset, batch_size=BATCH_SIZE, shuffle=True, collate_fn=collate_batch)

    return vocab, train_loader, valid_loader, test_loader

# Function to train the network
def train_network(net, iterator, optimizer, criterion, epochs):
    loss_values = []
    for epoch in range(epochs):
        epoch_loss = 0
        net.train()
        for texts, labels, _ in iterator:
            texts, labels = texts.to(device), labels.to(device)
            optimizer.zero_grad()
            predictions = net(texts).squeeze(1)
            loss = criterion(predictions, labels)
            loss.backward()
            optimizer.step()
            epoch_loss += loss.item()
        epoch_loss /= len(iterator)
        loss_values.append(epoch_loss)
        st.write(f'Epoch {epoch + 1}: loss {epoch_loss:.3f}')
    st.write('Finished Training')
    return loss_values

# Function to evaluate the network
def evaluate_network(net, iterator, criterion):
    epoch_loss = 0
    correct = 0
    total = 0
    all_labels = []
    all_predictions = []
    net.eval()
    with torch.no_grad():
        for texts, labels, _ in iterator:
            texts, labels = texts.to(device), labels.to(device)
            predictions = net(texts).squeeze(1)
            loss = criterion(predictions, labels)
            epoch_loss += loss.item()
            rounded_preds = torch.round(torch.sigmoid(predictions))
            correct += (rounded_preds == labels).sum().item()
            total += len(labels)
            all_labels.extend(labels.cpu().numpy())
            all_predictions.extend(rounded_preds.cpu().numpy())
    accuracy = 100 * correct / total
    st.write(f'Loss: {epoch_loss / len(iterator):.4f}, Accuracy: {accuracy:.2f}%')
    return accuracy, all_labels, all_predictions

# Load the data
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

# Display a loading message with some vertical space
st.markdown("<div style='margin-top: 50px;'><b>Loading data...</b></div>", unsafe_allow_html=True)
vocab, train_loader, valid_loader, test_loader = load_data()

# Streamlit interface
st.title("RNN for Text Classification on IMDb Dataset")

st.write("""
This application demonstrates how to build and train a Recurrent Neural Network (RNN) for text classification using the IMDb dataset. You can adjust hyperparameters, visualize sample data, and see the model's performance.
""")

# Sidebar for input parameters
st.sidebar.header('Model Hyperparameters')
embed_size = st.sidebar.slider('Embedding Size', 50, 300, 100)
hidden_size = st.sidebar.slider('Hidden Size', 50, 300, 256)
n_layers = st.sidebar.slider('Number of RNN Layers', 1, 3, 2)
dropout = st.sidebar.slider('Dropout', 0.0, 0.5, 0.2, step=0.1)
learning_rate = st.sidebar.slider('Learning Rate', 0.001, 0.1, 0.01, step=0.001)
epochs = st.sidebar.slider('Epochs', 1, 20, 5)

# Create the network
vocab_size = len(vocab)
output_size = 1
net = RNN(vocab_size, embed_size, hidden_size, output_size, n_layers, dropout).to(device)
criterion = nn.BCEWithLogitsLoss()
optimizer = optim.Adam(net.parameters(), lr=learning_rate)

# Add vertical space
st.write('\n' * 10)

# Train the network
if st.sidebar.button('Train Network'):
    loss_values = train_network(net, train_loader, optimizer, criterion, epochs)
    
    # Plot the loss values
    plt.figure(figsize=(10, 5))
    plt.plot(range(1, epochs + 1), loss_values, marker='o')
    plt.title('Training Loss Over Epochs')
    plt.xlabel('Epoch')
    plt.ylabel('Loss')
    plt.grid(True)
    st.pyplot(plt)
    
    # Store the trained model in the session state
    st.session_state['trained_model'] = net

# Test the network
if 'trained_model' in st.session_state and st.sidebar.button('Test Network'):
    accuracy, all_labels, all_predictions = evaluate_network(st.session_state['trained_model'], test_loader, criterion)
    st.write(f'Test Accuracy: {accuracy:.2f}%')
    
    # Display results in a table
    st.write('Ground Truth vs Predicted')
    results = pd.DataFrame({
        'Ground Truth': all_labels,
        'Predicted': all_predictions
    })
    st.table(results.head(50))  # Display first 50 results for brevity

# Visualize some test results
def visualize_text_predictions(iterator, net):
    net.eval()
    samples = []
    with torch.no_grad():
        for texts, labels, _ in iterator:
            predictions = torch.round(torch.sigmoid(net(texts).squeeze(1)))
            samples.extend(zip(texts.cpu(), labels.cpu(), predictions.cpu()))
            if len(samples) >= 10:
                break
    return samples[:10]

if 'trained_model' in st.session_state and st.sidebar.button('Show Test Results'):
    samples = visualize_text_predictions(test_loader, st.session_state['trained_model'])
    st.write('Ground Truth vs Predicted for Sample Texts')
    for i, (text, true_label, predicted) in enumerate(samples):
        st.write(f'Sample {i+1}')
        st.text(' '.join([vocab.get_itos()[token] for token in text]))
        st.write(f'Ground Truth: {true_label.item()}, Predicted: {predicted.item()}')