Spaces:
Running
Running
File size: 8,075 Bytes
de0d854 e84d316 713f0f4 e84d316 de0d854 e84d316 de0d854 713f0f4 de0d854 e84d316 de0d854 e84d316 713f0f4 e84d316 de0d854 e84d316 de0d854 e84d316 de0d854 e84d316 de0d854 e84d316 de0d854 e84d316 de0d854 713f0f4 e84d316 de0d854 e84d316 de0d854 e84d316 de0d854 e84d316 de0d854 e84d316 de0d854 e84d316 de0d854 713f0f4 de0d854 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 |
import streamlit as st
import torch
import torch.nn as nn
import torch.optim as optim
from torchtext.data.utils import get_tokenizer
from torchtext.vocab import build_vocab_from_iterator
from torchtext.datasets import IMDB
from torch.utils.data import DataLoader, random_split
import matplotlib.pyplot as plt
import seaborn as sns
import pandas as pd
import numpy as np
from collections import Counter
from torch.nn.utils.rnn import pad_sequence
# Define the RNN model
class RNN(nn.Module):
def __init__(self, vocab_size, embed_size, hidden_size, output_size, n_layers, dropout):
super(RNN, self).__init__()
self.embedding = nn.Embedding(vocab_size, embed_size)
self.rnn = nn.RNN(embed_size, hidden_size, n_layers, dropout=dropout, batch_first=True)
self.fc = nn.Linear(hidden_size, output_size)
self.dropout = nn.Dropout(dropout)
def forward(self, x):
x = self.dropout(self.embedding(x))
h0 = torch.zeros(n_layers, x.size(0), hidden_size).to(device)
out, _ = self.rnn(x, h0)
out = self.fc(out[:, -1, :])
return out
# Create a custom collate function to pad sequences
def collate_batch(batch):
texts, labels = zip(*batch)
text_lengths = [len(text) for text in texts]
texts_padded = pad_sequence(texts, batch_first=True, padding_value=vocab["<pad>"])
return texts_padded, torch.tensor(labels, dtype=torch.float), text_lengths
# Function to load the data
@st.cache_data
def load_data():
tokenizer = get_tokenizer("basic_english")
train_iter, test_iter = IMDB(split=('train', 'test'))
def yield_tokens(data_iter):
for _, text in data_iter:
yield tokenizer(text)
vocab = build_vocab_from_iterator(yield_tokens(train_iter), specials=["<unk>", "<pad>"])
vocab.set_default_index(vocab["<unk>"])
# Define the text and label processing pipelines
text_pipeline = lambda x: vocab(tokenizer(x))
label_pipeline = lambda x: 1 if x == 'pos' else 0
# Process the data into tensors
def process_data(data_iter):
texts, labels = [], []
for label, text in data_iter:
texts.append(torch.tensor(text_pipeline(text), dtype=torch.long))
labels.append(label_pipeline(label))
return texts, torch.tensor(labels, dtype=torch.float)
train_texts, train_labels = process_data(train_iter)
test_texts, test_labels = process_data(test_iter)
# Create DataLoaders
train_dataset = list(zip(train_texts, train_labels))
test_dataset = list(zip(test_texts, test_labels))
train_size = int(0.8 * len(train_dataset))
valid_size = len(train_dataset) - train_size
train_dataset, valid_dataset = random_split(train_dataset, [train_size, valid_size])
BATCH_SIZE = 64
train_loader = DataLoader(train_dataset, batch_size=BATCH_SIZE, shuffle=True, collate_fn=collate_batch)
valid_loader = DataLoader(valid_dataset, batch_size=BATCH_SIZE, shuffle=True, collate_fn=collate_batch)
test_loader = DataLoader(test_dataset, batch_size=BATCH_SIZE, shuffle=True, collate_fn=collate_batch)
return vocab, train_loader, valid_loader, test_loader
# Function to train the network
def train_network(net, iterator, optimizer, criterion, epochs):
loss_values = []
for epoch in range(epochs):
epoch_loss = 0
net.train()
for texts, labels, _ in iterator:
texts, labels = texts.to(device), labels.to(device)
optimizer.zero_grad()
predictions = net(texts).squeeze(1)
loss = criterion(predictions, labels)
loss.backward()
optimizer.step()
epoch_loss += loss.item()
epoch_loss /= len(iterator)
loss_values.append(epoch_loss)
st.write(f'Epoch {epoch + 1}: loss {epoch_loss:.3f}')
st.write('Finished Training')
return loss_values
# Function to evaluate the network
def evaluate_network(net, iterator, criterion):
epoch_loss = 0
correct = 0
total = 0
all_labels = []
all_predictions = []
net.eval()
with torch.no_grad():
for texts, labels, _ in iterator:
texts, labels = texts.to(device), labels.to(device)
predictions = net(texts).squeeze(1)
loss = criterion(predictions, labels)
epoch_loss += loss.item()
rounded_preds = torch.round(torch.sigmoid(predictions))
correct += (rounded_preds == labels).sum().item()
total += len(labels)
all_labels.extend(labels.cpu().numpy())
all_predictions.extend(rounded_preds.cpu().numpy())
accuracy = 100 * correct / total
st.write(f'Loss: {epoch_loss / len(iterator):.4f}, Accuracy: {accuracy:.2f}%')
return accuracy, all_labels, all_predictions
# Load the data
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# Display a loading message with some vertical space
st.markdown("<div style='margin-top: 50px;'><b>Loading data...</b></div>", unsafe_allow_html=True)
vocab, train_loader, valid_loader, test_loader = load_data()
# Streamlit interface
st.title("RNN for Text Classification on IMDb Dataset")
st.write("""
This application demonstrates how to build and train a Recurrent Neural Network (RNN) for text classification using the IMDb dataset. You can adjust hyperparameters, visualize sample data, and see the model's performance.
""")
# Sidebar for input parameters
st.sidebar.header('Model Hyperparameters')
embed_size = st.sidebar.slider('Embedding Size', 50, 300, 100)
hidden_size = st.sidebar.slider('Hidden Size', 50, 300, 256)
n_layers = st.sidebar.slider('Number of RNN Layers', 1, 3, 2)
dropout = st.sidebar.slider('Dropout', 0.0, 0.5, 0.2, step=0.1)
learning_rate = st.sidebar.slider('Learning Rate', 0.001, 0.1, 0.01, step=0.001)
epochs = st.sidebar.slider('Epochs', 1, 20, 5)
# Create the network
vocab_size = len(vocab)
output_size = 1
net = RNN(vocab_size, embed_size, hidden_size, output_size, n_layers, dropout).to(device)
criterion = nn.BCEWithLogitsLoss()
optimizer = optim.Adam(net.parameters(), lr=learning_rate)
# Add vertical space
st.write('\n' * 10)
# Train the network
if st.sidebar.button('Train Network'):
loss_values = train_network(net, train_loader, optimizer, criterion, epochs)
# Plot the loss values
plt.figure(figsize=(10, 5))
plt.plot(range(1, epochs + 1), loss_values, marker='o')
plt.title('Training Loss Over Epochs')
plt.xlabel('Epoch')
plt.ylabel('Loss')
plt.grid(True)
st.pyplot(plt)
# Store the trained model in the session state
st.session_state['trained_model'] = net
# Test the network
if 'trained_model' in st.session_state and st.sidebar.button('Test Network'):
accuracy, all_labels, all_predictions = evaluate_network(st.session_state['trained_model'], test_loader, criterion)
st.write(f'Test Accuracy: {accuracy:.2f}%')
# Display results in a table
st.write('Ground Truth vs Predicted')
results = pd.DataFrame({
'Ground Truth': all_labels,
'Predicted': all_predictions
})
st.table(results.head(50)) # Display first 50 results for brevity
# Visualize some test results
def visualize_text_predictions(iterator, net):
net.eval()
samples = []
with torch.no_grad():
for texts, labels, _ in iterator:
predictions = torch.round(torch.sigmoid(net(texts).squeeze(1)))
samples.extend(zip(texts.cpu(), labels.cpu(), predictions.cpu()))
if len(samples) >= 10:
break
return samples[:10]
if 'trained_model' in st.session_state and st.sidebar.button('Show Test Results'):
samples = visualize_text_predictions(test_loader, st.session_state['trained_model'])
st.write('Ground Truth vs Predicted for Sample Texts')
for i, (text, true_label, predicted) in enumerate(samples):
st.write(f'Sample {i+1}')
st.text(' '.join([vocab.get_itos()[token] for token in text]))
st.write(f'Ground Truth: {true_label.item()}, Predicted: {predicted.item()}')
|