Spaces:
Running
Running
File size: 4,069 Bytes
45282e7 2e0ae2e 45282e7 2e0ae2e 45282e7 2e0ae2e 45282e7 2e0ae2e 45282e7 2e0ae2e 45282e7 2e0ae2e 45282e7 2e0ae2e 45282e7 2e0ae2e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 |
import streamlit as st
import torch
import torch.nn as nn
import torch.optim as optim
import torchvision
import torchvision.transforms as transforms
import matplotlib.pyplot as plt
from torch.utils.data import DataLoader
import numpy as np
# Device configuration
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# Streamlit interface
st.title("CNN for Image Classification using CIFAR-10")
# Hyperparameters
num_epochs = st.sidebar.slider("Number of epochs", 1, 20, 10)
batch_size = st.sidebar.slider("Batch size", 10, 200, 100, step=10)
learning_rate = st.sidebar.slider("Learning rate", 0.0001, 0.01, 0.001, step=0.0001)
# CIFAR-10 dataset
transform = transforms.Compose(
[transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])
train_dataset = torchvision.datasets.CIFAR10(root='./data', train=True,
download=True, transform=transform)
test_dataset = torchvision.datasets.CIFAR10(root='./data', train=False,
download=True, transform=transform)
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False)
# Define a Convolutional Neural Network
class CNN(nn.Module):
def __init__(self):
super(CNN, self).__init__()
self.layer1 = nn.Sequential(
nn.Conv2d(3, 32, kernel_size=3, padding=1),
nn.BatchNorm2d(32),
nn.ReLU(),
nn.MaxPool2d(kernel_size=2, stride=2))
self.layer2 = nn.Sequential(
nn.Conv2d(32, 64, kernel_size=3),
nn.BatchNorm2d(64),
nn.ReLU(),
nn.MaxPool2d(2))
self.fc1 = nn.Linear(6*6*64, 600)
self.drop = nn.Dropout2d(0.25)
self.fc2 = nn.Linear(600, 100)
self.fc3 = nn.Linear(100, 10)
def forward(self, x):
out = self.layer1(x)
out = self.layer2(out)
out = out.view(out.size(0), -1)
out = self.fc1(out)
out = self.drop(out)
out = self.fc2(out)
out = self.fc3(out)
return out
model = CNN().to(device)
# Loss and optimizer
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
# Lists to store losses
train_losses = []
test_losses = []
# Train the model
total_step = len(train_loader)
for epoch in range(num_epochs):
train_loss = 0
for i, (images, labels) in enumerate(train_loader):
images = images.to(device)
labels = labels.to(device)
# Forward pass
outputs = model(images)
loss = criterion(outputs, labels)
# Backward and optimize
optimizer.zero_grad()
loss.backward()
optimizer.step()
train_loss += loss.item()
train_loss /= total_step
train_losses.append(train_loss)
st.write(f'Epoch [{epoch+1}/{num_epochs}], Loss: {train_loss:.4f}')
# Test the model
model.eval()
with torch.no_grad():
test_loss = 0
correct = 0
total = 0
for images, labels in test_loader:
images = images.to(device)
labels = labels.to(device)
outputs = model(images)
loss = criterion(outputs, labels)
test_loss += loss.item()
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
test_loss /= len(test_loader)
test_losses.append(test_loss)
accuracy = 100 * correct / total
st.write(f'Test Loss: {test_loss:.4f}, Accuracy: {accuracy:.2f}%')
model.train()
# Plotting the loss
fig, ax = plt.subplots()
ax.plot(range(1, num_epochs + 1), train_losses, label='Train Loss')
ax.plot(range(1, num_epochs + 1), test_losses, label='Test Loss')
ax.set_xlabel('Epoch')
ax.set_ylabel('Loss')
ax.set_title('Training and Test Loss')
ax.legend()
st.pyplot(fig)
# Save the model checkpoint
torch.save(model.state_dict(), 'cnn_model.pth')
|