File size: 4,069 Bytes
45282e7
 
 
 
 
2e0ae2e
 
45282e7
 
 
2e0ae2e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
45282e7
2e0ae2e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
45282e7
2e0ae2e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
45282e7
2e0ae2e
 
 
 
45282e7
2e0ae2e
 
 
 
 
45282e7
2e0ae2e
 
 
 
 
 
 
 
 
45282e7
2e0ae2e
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
import streamlit as st
import torch
import torch.nn as nn
import torch.optim as optim
import torchvision
import torchvision.transforms as transforms
import matplotlib.pyplot as plt
from torch.utils.data import DataLoader
import numpy as np

# Device configuration
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

# Streamlit interface
st.title("CNN for Image Classification using CIFAR-10")

# Hyperparameters
num_epochs = st.sidebar.slider("Number of epochs", 1, 20, 10)
batch_size = st.sidebar.slider("Batch size", 10, 200, 100, step=10)
learning_rate = st.sidebar.slider("Learning rate", 0.0001, 0.01, 0.001, step=0.0001)

# CIFAR-10 dataset
transform = transforms.Compose(
    [transforms.ToTensor(),
     transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])

train_dataset = torchvision.datasets.CIFAR10(root='./data', train=True,
                                             download=True, transform=transform)

test_dataset = torchvision.datasets.CIFAR10(root='./data', train=False,
                                            download=True, transform=transform)

train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False)

# Define a Convolutional Neural Network
class CNN(nn.Module):
    def __init__(self):
        super(CNN, self).__init__()
        self.layer1 = nn.Sequential(
            nn.Conv2d(3, 32, kernel_size=3, padding=1),
            nn.BatchNorm2d(32),
            nn.ReLU(),
            nn.MaxPool2d(kernel_size=2, stride=2))
        self.layer2 = nn.Sequential(
            nn.Conv2d(32, 64, kernel_size=3),
            nn.BatchNorm2d(64),
            nn.ReLU(),
            nn.MaxPool2d(2))
        self.fc1 = nn.Linear(6*6*64, 600)
        self.drop = nn.Dropout2d(0.25)
        self.fc2 = nn.Linear(600, 100)
        self.fc3 = nn.Linear(100, 10)

    def forward(self, x):
        out = self.layer1(x)
        out = self.layer2(out)
        out = out.view(out.size(0), -1)
        out = self.fc1(out)
        out = self.drop(out)
        out = self.fc2(out)
        out = self.fc3(out)
        return out

model = CNN().to(device)

# Loss and optimizer
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)

# Lists to store losses
train_losses = []
test_losses = []

# Train the model
total_step = len(train_loader)
for epoch in range(num_epochs):
    train_loss = 0
    for i, (images, labels) in enumerate(train_loader):
        images = images.to(device)
        labels = labels.to(device)

        # Forward pass
        outputs = model(images)
        loss = criterion(outputs, labels)

        # Backward and optimize
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

        train_loss += loss.item()

    train_loss /= total_step
    train_losses.append(train_loss)
    st.write(f'Epoch [{epoch+1}/{num_epochs}], Loss: {train_loss:.4f}')

    # Test the model
    model.eval()
    with torch.no_grad():
        test_loss = 0
        correct = 0
        total = 0
        for images, labels in test_loader:
            images = images.to(device)
            labels = labels.to(device)
            outputs = model(images)
            loss = criterion(outputs, labels)
            test_loss += loss.item()
            _, predicted = torch.max(outputs.data, 1)
            total += labels.size(0)
            correct += (predicted == labels).sum().item()

        test_loss /= len(test_loader)
        test_losses.append(test_loss)
        accuracy = 100 * correct / total
        st.write(f'Test Loss: {test_loss:.4f}, Accuracy: {accuracy:.2f}%')
    model.train()

# Plotting the loss
fig, ax = plt.subplots()
ax.plot(range(1, num_epochs + 1), train_losses, label='Train Loss')
ax.plot(range(1, num_epochs + 1), test_losses, label='Test Loss')
ax.set_xlabel('Epoch')
ax.set_ylabel('Loss')
ax.set_title('Training and Test Loss')
ax.legend()
st.pyplot(fig)

# Save the model checkpoint
torch.save(model.state_dict(), 'cnn_model.pth')