Spaces:
Running
Running
File size: 6,314 Bytes
de0d854 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 |
import streamlit as st
import torch
import torch.nn as nn
import torch.optim as optim
from torchtext.legacy import data, datasets
import matplotlib.pyplot as plt
import seaborn as sns
import pandas as pd
import numpy as np
# Define the RNN model
class RNN(nn.Module):
def __init__(self, vocab_size, embed_size, hidden_size, output_size, n_layers, dropout):
super(RNN, self).__init__()
self.embedding = nn.Embedding(vocab_size, embed_size)
self.rnn = nn.RNN(embed_size, hidden_size, n_layers, dropout=dropout, batch_first=True)
self.fc = nn.Linear(hidden_size, output_size)
self.dropout = nn.Dropout(dropout)
def forward(self, x):
x = self.dropout(self.embedding(x))
h0 = torch.zeros(n_layers, x.size(0), hidden_size).to(device)
out, _ = self.rnn(x, h0)
out = self.fc(out[:, -1, :])
return out
# Function to load the data
@st.cache_data
def load_data():
TEXT = data.Field(tokenize='spacy', tokenizer_language='en_core_web_sm')
LABEL = data.LabelField(dtype=torch.float)
train_data, test_data = datasets.IMDB.splits(TEXT, LABEL)
train_data, valid_data = train_data.split(split_ratio=0.8)
MAX_VOCAB_SIZE = 25_000
TEXT.build_vocab(train_data, max_size=MAX_VOCAB_SIZE, vectors="glove.6B.100d", unk_init=torch.Tensor.normal_)
LABEL.build_vocab(train_data)
BATCH_SIZE = 64
train_iterator, valid_iterator, test_iterator = data.BucketIterator.splits(
(train_data, valid_data, test_data),
batch_size=BATCH_SIZE,
device=device)
return TEXT, LABEL, train_iterator, valid_iterator, test_iterator
# Function to train the network
def train_network(net, iterator, optimizer, criterion, epochs):
loss_values = []
for epoch in range(epochs):
epoch_loss = 0
net.train()
for batch in iterator:
optimizer.zero_grad()
predictions = net(batch.text).squeeze(1)
loss = criterion(predictions, batch.label)
loss.backward()
optimizer.step()
epoch_loss += loss.item()
epoch_loss /= len(iterator)
loss_values.append(epoch_loss)
st.write(f'Epoch {epoch + 1}: loss {epoch_loss:.3f}')
st.write('Finished Training')
return loss_values
# Function to evaluate the network
def evaluate_network(net, iterator, criterion):
epoch_loss = 0
correct = 0
total = 0
all_labels = []
all_predictions = []
net.eval()
with torch.no_grad():
for batch in iterator:
predictions = net(batch.text).squeeze(1)
loss = criterion(predictions, batch.label)
epoch_loss += loss.item()
rounded_preds = torch.round(torch.sigmoid(predictions))
correct += (rounded_preds == batch.label).sum().item()
total += len(batch.label)
all_labels.extend(batch.label.cpu().numpy())
all_predictions.extend(rounded_preds.cpu().numpy())
accuracy = 100 * correct / total
st.write(f'Loss: {epoch_loss / len(iterator):.4f}, Accuracy: {accuracy:.2f}%')
return accuracy, all_labels, all_predictions
# Load the data
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
TEXT, LABEL, train_iterator, valid_iterator, test_iterator = load_data()
# Streamlit interface
st.title("RNN for Text Classification on IMDb Dataset")
st.write("""
This application demonstrates how to build and train a Recurrent Neural Network (RNN) for text classification using the IMDb dataset. You can adjust hyperparameters, visualize sample data, and see the model's performance.
""")
# Sidebar for input parameters
st.sidebar.header('Model Hyperparameters')
embed_size = st.sidebar.slider('Embedding Size', 50, 300, 100)
hidden_size = st.sidebar.slider('Hidden Size', 50, 300, 256)
n_layers = st.sidebar.slider('Number of RNN Layers', 1, 3, 2)
dropout = st.sidebar.slider('Dropout', 0.0, 0.5, 0.2, step=0.1)
learning_rate = st.sidebar.slider('Learning Rate', 0.001, 0.1, 0.01, step=0.001)
epochs = st.sidebar.slider('Epochs', 1, 20, 5)
# Create the network
vocab_size = len(TEXT.vocab)
output_size = 1
net = RNN(vocab_size, embed_size, hidden_size, output_size, n_layers, dropout).to(device)
criterion = nn.BCEWithLogitsLoss()
optimizer = optim.Adam(net.parameters(), lr=learning_rate)
# Add vertical space
st.write('\n' * 10)
# Train the network
if st.sidebar.button('Train Network'):
loss_values = train_network(net, train_iterator, optimizer, criterion, epochs)
# Plot the loss values
plt.figure(figsize=(10, 5))
plt.plot(range(1, epochs + 1), loss_values, marker='o')
plt.title('Training Loss Over Epochs')
plt.xlabel('Epoch')
plt.ylabel('Loss')
plt.grid(True)
st.pyplot(plt)
# Store the trained model in the session state
st.session_state['trained_model'] = net
# Test the network
if 'trained_model' in st.session_state and st.sidebar.button('Test Network'):
accuracy, all_labels, all_predictions = evaluate_network(st.session_state['trained_model'], test_iterator, criterion)
st.write(f'Test Accuracy: {accuracy:.2f}%')
# Display results in a table
st.write('Ground Truth vs Predicted')
results = pd.DataFrame({
'Ground Truth': all_labels,
'Predicted': all_predictions
})
st.table(results.head(50)) # Display first 50 results for brevity
# Visualize some test results
def visualize_text_predictions(iterator, net):
net.eval()
samples = []
with torch.no_grad():
for batch in iterator:
predictions = torch.round(torch.sigmoid(net(batch.text).squeeze(1)))
samples.extend(zip(batch.text.cpu(), batch.label.cpu(), predictions.cpu()))
if len(samples) >= 10:
break
return samples[:10]
if 'trained_model' in st.session_state and st.sidebar.button('Show Test Results'):
samples = visualize_text_predictions(test_iterator, st.session_state['trained_model'])
st.write('Ground Truth vs Predicted for Sample Texts')
for i, (text, true_label, predicted) in enumerate(samples):
st.write(f'Sample {i+1}')
st.text(' '.join([TEXT.vocab.itos[token] for token in text]))
st.write(f'Ground Truth: {true_label.item()}, Predicted: {predicted.item()}')
|