Spaces:
Running
Running
File size: 6,781 Bytes
d98f068 45282e7 2e0ae2e 9373ca7 45282e7 9373ca7 45282e7 2e0ae2e 9373ca7 2e0ae2e 9373ca7 b8d9743 9373ca7 2e0ae2e 45282e7 2e0ae2e 7ff3f27 2e0ae2e 7ff3f27 45282e7 7ff3f27 2e0ae2e f6cff54 9373ca7 f6cff54 9373ca7 f6cff54 2e0ae2e f6cff54 2e0ae2e 45282e7 f6cff54 9373ca7 f6cff54 9373ca7 f6cff54 9373ca7 f6cff54 9373ca7 f6cff54 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 |
import streamlit as st
import torch
import torch.nn as nn
import torch.optim as optim
import torchvision
import torchvision.transforms as transforms
import matplotlib.pyplot as plt
import seaborn as sns
from torch.utils.data import DataLoader
from sklearn.metrics import confusion_matrix
import numpy as np
# Device configuration
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# Streamlit interface
st.title("CNN for Image Classification using CIFAR-10")
st.write("""
This application demonstrates how to build and train a Convolutional Neural Network (CNN) for image classification using the CIFAR-10 dataset. You can adjust hyperparameters, visualize sample images, and see the model's performance.
""")
# Hyperparameters
num_epochs = st.sidebar.slider("Number of epochs", 1, 20, 10)
batch_size = st.sidebar.slider("Batch size", 10, 200, 100, step=10)
learning_rate = st.sidebar.slider("Learning rate", 0.0001, 0.01, 0.001, step=0.0001)
# CIFAR-10 dataset
transform = transforms.Compose(
[transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])
train_dataset = torchvision.datasets.CIFAR10(root='./data', train=True,
download=True, transform=transform)
test_dataset = torchvision.datasets.CIFAR10(root='./data', train=False,
download=True, transform=transform)
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False)
# Display some sample images
st.write("## Sample Images from CIFAR-10 Dataset")
sample_images, sample_labels = next(iter(train_loader))
fig, axes = plt.subplots(1, 6, figsize=(15, 5))
for i in range(6):
axes[i].imshow(np.transpose(sample_images[i].numpy(), (1, 2, 0)))
axes[i].set_title(f'Label: {sample_labels[i].item()}')
axes[i].axis('off')
st.pyplot(fig)
# Class distribution
st.write("## Class Distribution in CIFAR-10 Dataset")
class_names = train_dataset.classes
class_counts = np.bincount([sample_labels[i].item() for i in range(len(sample_labels))])
fig, ax = plt.subplots()
sns.barplot(x=class_names, y=class_counts, ax=ax)
ax.set_ylabel('Count')
ax.set_title('Class Distribution')
st.pyplot(fig)
# Define a Convolutional Neural Network
class CNN(nn.Module):
def __init__(self):
super(CNN, self).__init__()
self.layer1 = nn.Sequential(
nn.Conv2d(3, 32, kernel_size=3, padding=1),
nn.BatchNorm2d(32),
nn.ReLU(),
nn.MaxPool2d(kernel_size=2, stride=2))
self.layer2 = nn.Sequential(
nn.Conv2d(32, 64, kernel_size=3),
nn.BatchNorm2d(64),
nn.ReLU(),
nn.MaxPool2d(2))
# Automatically determine the size of the flattened features after convolution and pooling
self._to_linear = None
self.convs(torch.randn(1, 3, 32, 32))
self.fc1 = nn.Linear(self._to_linear, 600)
self.drop = nn.Dropout2d(0.25)
self.fc2 = nn.Linear(600, 100)
self.fc3 = nn.Linear(100, 10)
def convs(self, x):
x = self.layer1(x)
x = self.layer2(x)
if self._to_linear is None:
self._to_linear = x.view(x.size(0), -1).shape[1]
return x
def forward(self, x):
x = self.convs(x)
x = x.view(x.size(0), -1)
x = self.fc1(x)
x = self.drop(x)
x = self.fc2(x)
x = self.fc3(x)
return x
model = CNN().to(device)
# Loss and optimizer
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
# Button to start training
if st.button("Start Training"):
# Lists to store losses and accuracy
train_losses = []
test_losses = []
test_accuracies = []
# Progress bar
progress_bar = st.progress(0)
# Train the model
total_step = len(train_loader)
for epoch in range(num_epochs):
train_loss = 0
for i, (images, labels) in enumerate(train_loader):
images = images.to(device)
labels = labels.to(device)
# Forward pass
outputs = model(images)
loss = criterion(outputs, labels)
# Backward and optimize
optimizer.zero_grad()
loss.backward()
optimizer.step()
train_loss += loss.item()
train_loss /= total_step
train_losses.append(train_loss)
st.write(f'Epoch [{epoch+1}/{num_epochs}], Loss: {train_loss:.4f}')
# Test the model
model.eval()
with torch.no_grad():
test_loss = 0
correct = 0
total = 0
all_labels = []
all_predictions = []
for images, labels in test_loader:
images = images.to(device)
labels = labels.to(device)
outputs = model(images)
loss = criterion(outputs, labels)
test_loss += loss.item()
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
all_labels.extend(labels.cpu().numpy())
all_predictions.extend(predicted.cpu().numpy())
test_loss /= len(test_loader)
test_losses.append(test_loss)
accuracy = 100 * correct / total
test_accuracies.append(accuracy)
st.write(f'Test Loss: {test_loss:.4f}, Accuracy: {accuracy:.2f}%')
model.train()
# Update progress bar
progress_bar.progress((epoch + 1) / num_epochs)
# Plotting the loss and accuracy
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(14, 5))
ax1.plot(range(1, num_epochs + 1), train_losses, label='Train Loss')
ax1.plot(range(1, num_epochs + 1), test_losses, label='Test Loss')
ax1.set_xlabel('Epoch')
ax1.set_ylabel('Loss')
ax1.set_title('Training and Test Loss')
ax1.legend()
ax2.plot(range(1, num_epochs + 1), test_accuracies, label='Test Accuracy')
ax2.set_xlabel('Epoch')
ax2.set_ylabel('Accuracy (%)')
ax2.set_title('Test Accuracy')
ax2.legend()
st.pyplot(fig)
# Confusion Matrix
cm = confusion_matrix(all_labels, all_predictions)
fig, ax = plt.subplots(figsize=(10, 10))
sns.heatmap(cm, annot=True, fmt="d", xticklabels=class_names, yticklabels=class_names, cmap='Blues')
ax.set_xlabel('Predicted')
ax.set_ylabel('True')
ax.set_title('Confusion Matrix')
st.pyplot(fig)
# Save the model checkpoint
torch.save(model.state_dict(), 'cnn_model.pth')
st.write("Model training completed and saved as 'cnn_model.pth'")
|