Spaces:
Running
Running
File size: 4,748 Bytes
d98f068 45282e7 2e0ae2e 45282e7 2e0ae2e 45282e7 2e0ae2e 7ff3f27 2e0ae2e 7ff3f27 45282e7 7ff3f27 2e0ae2e f6cff54 2e0ae2e f6cff54 2e0ae2e 45282e7 f6cff54 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 |
import streamlit as st
import torch
import torch.nn as nn
import torch.optim as optim
import torchvision
import torchvision.transforms as transforms
import matplotlib.pyplot as plt
from torch.utils.data import DataLoader
import numpy as np
# Device configuration
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# Streamlit interface
st.title("CNN for Image Classification using CIFAR-10")
# Hyperparameters
num_epochs = st.sidebar.slider("Number of epochs", 1, 20, 10)
batch_size = st.sidebar.slider("Batch size", 10, 200, 100, step=10)
learning_rate = st.sidebar.slider("Learning rate", 0.0001, 0.01, 0.001, step=0.0001)
# CIFAR-10 dataset
transform = transforms.Compose(
[transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])
train_dataset = torchvision.datasets.CIFAR10(root='./data', train=True,
download=True, transform=transform)
test_dataset = torchvision.datasets.CIFAR10(root='./data', train=False,
download=True, transform=transform)
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False)
# Define a Convolutional Neural Network
class CNN(nn.Module):
def __init__(self):
super(CNN, self).__init__()
self.layer1 = nn.Sequential(
nn.Conv2d(3, 32, kernel_size=3, padding=1),
nn.BatchNorm2d(32),
nn.ReLU(),
nn.MaxPool2d(kernel_size=2, stride=2))
self.layer2 = nn.Sequential(
nn.Conv2d(32, 64, kernel_size=3),
nn.BatchNorm2d(64),
nn.ReLU(),
nn.MaxPool2d(2))
# Automatically determine the size of the flattened features after convolution and pooling
self._to_linear = None
self.convs(torch.randn(1, 3, 32, 32))
self.fc1 = nn.Linear(self._to_linear, 600)
self.drop = nn.Dropout2d(0.25)
self.fc2 = nn.Linear(600, 100)
self.fc3 = nn.Linear(100, 10)
def convs(self, x):
x = self.layer1(x)
x = self.layer2(x)
if self._to_linear is None:
self._to_linear = x.view(x.size(0), -1).shape[1]
return x
def forward(self, x):
x = self.convs(x)
x = x.view(x.size(0), -1)
x = self.fc1(x)
x = self.drop(x)
x = self.fc2(x)
x = self.fc3(x)
return x
model = CNN().to(device)
# Loss and optimizer
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
# Button to start training
if st.button("Start Training"):
# Lists to store losses
train_losses = []
test_losses = []
# Train the model
total_step = len(train_loader)
for epoch in range(num_epochs):
train_loss = 0
for i, (images, labels) in enumerate(train_loader):
images = images.to(device)
labels = labels.to(device)
# Forward pass
outputs = model(images)
loss = criterion(outputs, labels)
# Backward and optimize
optimizer.zero_grad()
loss.backward()
optimizer.step()
train_loss += loss.item()
train_loss /= total_step
train_losses.append(train_loss)
st.write(f'Epoch [{epoch+1}/{num_epochs}], Loss: {train_loss:.4f}')
# Test the model
model.eval()
with torch.no_grad():
test_loss = 0
correct = 0
total = 0
for images, labels in test_loader:
images = images.to(device)
labels = labels.to(device)
outputs = model(images)
loss = criterion(outputs, labels)
test_loss += loss.item()
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
test_loss /= len(test_loader)
test_losses.append(test_loss)
accuracy = 100 * correct / total
st.write(f'Test Loss: {test_loss:.4f}, Accuracy: {accuracy:.2f}%')
model.train()
# Plotting the loss
fig, ax = plt.subplots()
ax.plot(range(1, num_epochs + 1), train_losses, label='Train Loss')
ax.plot(range(1, num_epochs + 1), test_losses, label='Test Loss')
ax.set_xlabel('Epoch')
ax.set_ylabel('Loss')
ax.set_title('Training and Test Loss')
ax.legend()
st.pyplot(fig)
# Save the model checkpoint
torch.save(model.state_dict(), 'cnn_model.pth')
st.write("Model training completed and saved as 'cnn_model.pth'")
|