Spaces:
Running
Running
import streamlit as st | |
from PIL import Image | |
import torch | |
import torchvision.transforms as transforms | |
import torchvision.models as models | |
# Save the model (this should be run only once, so it is placed here for completeness) | |
def save_model(): | |
model = models.resnet18(pretrained=True) | |
torch.save(model.state_dict(), 'resnet18.pth') | |
# Call save_model to save the model | |
save_model() | |
# Load the model | |
def load_model(): | |
model = models.resnet18() | |
model.load_state_dict(torch.load('resnet18.pth')) | |
model.eval() | |
return model | |
def main(): | |
st.title("Image Classification with ResNet18") | |
# Upload an image | |
uploaded_file = st.file_uploader("Choose an image...", type="jpg") | |
if uploaded_file is not None: | |
image = Image.open(uploaded_file) | |
st.image(image, caption='Uploaded Image.', use_column_width=True) | |
st.write("") | |
st.write("Classifying...") | |
# Load the model | |
model = load_model() | |
# Preprocess the image | |
preprocess = transforms.Compose([ | |
transforms.Resize(256), | |
transforms.CenterCrop(224), | |
transforms.ToTensor(), | |
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), | |
]) | |
input_tensor = preprocess(image) | |
input_batch = input_tensor.unsqueeze(0) | |
# Ensure the input is on the same device as the model | |
if torch.cuda.is_available(): | |
input_batch = input_batch.to('cuda') | |
model.to('cuda') | |
with torch.no_grad(): | |
output = model(input_batch) | |
# The output has unnormalized scores. To get probabilities, you can run a softmax on it. | |
probabilities = torch.nn.functional.softmax(output[0], dim=0) | |
# Print top 5 categories | |
with open("imagenet_classes.txt") as f: | |
categories = [line.strip() for line in f.readlines()] | |
top5_prob, top5_catid = torch.topk(probabilities, 5) | |
for i in range(top5_prob.size(0)): | |
st.write(categories[top5_catid[i]], top5_prob[i].item()) | |
if __name__ == "__main__": | |
main() | |