pytorch / pages /27_Inception_model.py
eaglelandsonce's picture
Update pages/27_Inception_model.py
cf6acec verified
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
from torchvision import datasets, transforms
from torch.utils.data import DataLoader
import streamlit as st
import matplotlib.pyplot as plt
import numpy as np
from PIL import Image
# Define the Inception Module
class InceptionModule(nn.Module):
def __init__(self, in_channels):
super(InceptionModule, self).__init__()
self.branch1x1 = nn.Conv2d(in_channels, 64, kernel_size=1)
self.branch3x3 = nn.Conv2d(in_channels, 64, kernel_size=3, padding=1)
self.branch5x5 = nn.Conv2d(in_channels, 64, kernel_size=5, padding=2)
self.branch_pool = nn.Conv2d(in_channels, 64, kernel_size=1)
def forward(self, x):
branch1x1 = self.branch1x1(x)
branch3x3 = self.branch3x3(x)
branch5x5 = self.branch5x5(x)
branch_pool = nn.MaxPool2d(kernel_size=3, stride=1, padding=1)(x)
branch_pool = self.branch_pool(branch_pool)
outputs = [branch1x1, branch3x3, branch5x5, branch_pool]
return torch.cat(outputs, 1)
# Define the Inception Network
class InceptionNet(nn.Module):
def __init__(self, num_classes=10):
super(InceptionNet, self).__init__()
self.inception1 = InceptionModule(in_channels=3)
self.fc = nn.Linear(64 * 4 * 224 * 224, num_classes)
def forward(self, x):
x = self.inception1(x)
x = x.view(x.size(0), -1)
x = self.fc(x)
return x
# Training function
def train(model, device, train_loader, optimizer, epoch):
model.train()
for batch_idx, (data, target) in enumerate(train_loader):
data, target = data.to(device), target.to(device)
optimizer.zero_grad()
output = model(data)
loss = F.cross_entropy(output, target)
loss.backward()
optimizer.step()
if batch_idx % 10 == 0:
print(f'Train Epoch: {epoch} [{batch_idx * len(data)}/{len(train_loader.dataset)} ({100. * batch_idx / len(train_loader):.0f}%)]\tLoss: {loss.item():.6f}')
# Define a simple transformation
transform = transforms.Compose([
transforms.Resize((224, 224)),
transforms.ToTensor()
])
# Initialize model and optimizer
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = InceptionNet().to(device)
optimizer = optim.Adam(model.parameters(), lr=0.001)
# Streamlit app
st.title("InceptionNet Image Classifier")
uploaded_file = st.file_uploader("Choose an image...", type="jpg")
if uploaded_file is not None:
image = Image.open(uploaded_file)
st.image(image, caption='Uploaded Image', use_column_width=True)
image = transform(image).unsqueeze(0).to(device)
st.write("Classifying...")
model.eval()
with torch.no_grad():
output = model(image)
st.write("Output:", output.cpu().detach().numpy())
# Adjust Hyperparameters
st.sidebar.title("Adjust Hyperparameters")
learning_rate = st.sidebar.slider("Learning Rate", 0.0001, 0.01, 0.001)
optimizer = optim.Adam(model.parameters(), lr=learning_rate)
# Visualize Model's Predictions
if st.sidebar.button("Train Model"):
# Load dummy data for demonstration purposes
train_loader = DataLoader(
datasets.FakeData(transform=transform),
batch_size=64, shuffle=True
)
train(model, device, train_loader, optimizer, epoch=1)
st.sidebar.write("Model Trained!")