eaglelandsonce commited on
Commit
189832d
·
verified ·
1 Parent(s): 4a56060

Update pages/13_FFNN.py

Browse files
Files changed (1) hide show
  1. pages/13_FFNN.py +2 -4
pages/13_FFNN.py CHANGED
@@ -26,7 +26,7 @@ class FeedforwardNeuralNetwork(nn.Module):
26
  return x
27
 
28
  # Function to load the data
29
- @st.cache
30
  def load_data():
31
  transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.5,), (0.5,))])
32
  trainset = torchvision.datasets.MNIST(root='./data', train=True, download=True, transform=transform)
@@ -68,17 +68,15 @@ trainloader, testloader = load_data()
68
 
69
  # Streamlit sidebar for input parameters
70
  st.sidebar.header('Model Hyperparameters')
71
- input_size = st.sidebar.slider('Input Size', 784, 784, 784)
72
  hidden1_size = st.sidebar.slider('Hidden Layer 1 Size', 128, 1024, 512)
73
  hidden2_size = st.sidebar.slider('Hidden Layer 2 Size', 128, 1024, 256)
74
  hidden3_size = st.sidebar.slider('Hidden Layer 3 Size', 128, 1024, 128)
75
- output_size = st.sidebar.slider('Output Size', 10, 10, 10)
76
  learning_rate = st.sidebar.slider('Learning Rate', 0.001, 0.1, 0.01, step=0.001)
77
  momentum = st.sidebar.slider('Momentum', 0.0, 1.0, 0.9, step=0.1)
78
  epochs = st.sidebar.slider('Epochs', 1, 20, 5)
79
 
80
  # Create the network
81
- net = FeedforwardNeuralNetwork(input_size, hidden1_size, hidden2_size, hidden3_size, output_size)
82
  criterion = nn.CrossEntropyLoss()
83
  optimizer = optim.SGD(net.parameters(), lr=learning_rate, momentum=momentum)
84
 
 
26
  return x
27
 
28
  # Function to load the data
29
+ @st.cache_data
30
  def load_data():
31
  transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.5,), (0.5,))])
32
  trainset = torchvision.datasets.MNIST(root='./data', train=True, download=True, transform=transform)
 
68
 
69
  # Streamlit sidebar for input parameters
70
  st.sidebar.header('Model Hyperparameters')
 
71
  hidden1_size = st.sidebar.slider('Hidden Layer 1 Size', 128, 1024, 512)
72
  hidden2_size = st.sidebar.slider('Hidden Layer 2 Size', 128, 1024, 256)
73
  hidden3_size = st.sidebar.slider('Hidden Layer 3 Size', 128, 1024, 128)
 
74
  learning_rate = st.sidebar.slider('Learning Rate', 0.001, 0.1, 0.01, step=0.001)
75
  momentum = st.sidebar.slider('Momentum', 0.0, 1.0, 0.9, step=0.1)
76
  epochs = st.sidebar.slider('Epochs', 1, 20, 5)
77
 
78
  # Create the network
79
+ net = FeedforwardNeuralNetwork(784, hidden1_size, hidden2_size, hidden3_size, 10)
80
  criterion = nn.CrossEntropyLoss()
81
  optimizer = optim.SGD(net.parameters(), lr=learning_rate, momentum=momentum)
82