Spaces:
Running
Running
Rename pages/23_Gan.py to pages/23_GANs.py
Browse files- pages/23_GANs.py +114 -0
- pages/23_Gan.py +0 -84
pages/23_GANs.py
ADDED
@@ -0,0 +1,114 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import torch.optim as optim
|
4 |
+
import torchvision.transforms as transforms
|
5 |
+
import torchvision.datasets as datasets
|
6 |
+
from torch.utils.data import DataLoader
|
7 |
+
import numpy as np
|
8 |
+
import matplotlib.pyplot as plt
|
9 |
+
import streamlit as st
|
10 |
+
|
11 |
+
# Define the Generator
|
12 |
+
class Generator(nn.Module):
|
13 |
+
def __init__(self, input_dim, output_dim):
|
14 |
+
super(Generator, self).__init__()
|
15 |
+
self.model = nn.Sequential(
|
16 |
+
nn.Linear(input_dim, 128),
|
17 |
+
nn.ReLU(),
|
18 |
+
nn.Linear(128, 256),
|
19 |
+
nn.ReLU(),
|
20 |
+
nn.Linear(256, output_dim),
|
21 |
+
nn.Tanh()
|
22 |
+
)
|
23 |
+
|
24 |
+
def forward(self, x):
|
25 |
+
return self.model(x)
|
26 |
+
|
27 |
+
# Define the Discriminator
|
28 |
+
class Discriminator(nn.Module):
|
29 |
+
def __init__(self, input_dim):
|
30 |
+
super(Discriminator, self).__init__()
|
31 |
+
self.model = nn.Sequential(
|
32 |
+
nn.Linear(input_dim, 256),
|
33 |
+
nn.LeakyReLU(0.2),
|
34 |
+
nn.Linear(256, 128),
|
35 |
+
nn.LeakyReLU(0.2),
|
36 |
+
nn.Linear(128, 1),
|
37 |
+
nn.Sigmoid()
|
38 |
+
)
|
39 |
+
|
40 |
+
def forward(self, x):
|
41 |
+
return self.model(x)
|
42 |
+
|
43 |
+
# Hyperparameters
|
44 |
+
latent_dim = 100
|
45 |
+
image_dim = 28 * 28 # MNIST images are 28x28 pixels
|
46 |
+
lr = 0.0002
|
47 |
+
batch_size = 64
|
48 |
+
epochs = 50
|
49 |
+
|
50 |
+
# Prepare the data
|
51 |
+
transform = transforms.Compose([
|
52 |
+
transforms.ToTensor(),
|
53 |
+
transforms.Normalize([0.5], [0.5])
|
54 |
+
])
|
55 |
+
|
56 |
+
dataset = datasets.MNIST(root='mnist_data', train=True, transform=transform, download=True)
|
57 |
+
dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=True)
|
58 |
+
|
59 |
+
# Initialize the models
|
60 |
+
generator = Generator(latent_dim, image_dim)
|
61 |
+
discriminator = Discriminator(image_dim)
|
62 |
+
|
63 |
+
# Optimizers
|
64 |
+
optimizer_G = optim.Adam(generator.parameters(), lr=lr)
|
65 |
+
optimizer_D = optim.Adam(discriminator.parameters(), lr=lr)
|
66 |
+
|
67 |
+
# Loss function
|
68 |
+
criterion = nn.BCELoss()
|
69 |
+
|
70 |
+
# Streamlit interface
|
71 |
+
st.title("GAN with PyTorch and Hugging Face")
|
72 |
+
st.write("Training a GAN to generate MNIST digits")
|
73 |
+
|
74 |
+
train_gan = st.button("Train GAN")
|
75 |
+
|
76 |
+
if train_gan:
|
77 |
+
# Training loop
|
78 |
+
for epoch in range(epochs):
|
79 |
+
for i, (imgs, _) in enumerate(dataloader):
|
80 |
+
# Prepare real and fake data
|
81 |
+
real_imgs = imgs.view(imgs.size(0), -1)
|
82 |
+
real_labels = torch.ones(imgs.size(0), 1)
|
83 |
+
fake_labels = torch.zeros(imgs.size(0), 1)
|
84 |
+
z = torch.randn(imgs.size(0), latent_dim)
|
85 |
+
fake_imgs = generator(z)
|
86 |
+
|
87 |
+
# Train Discriminator
|
88 |
+
optimizer_D.zero_grad()
|
89 |
+
real_loss = criterion(discriminator(real_imgs), real_labels)
|
90 |
+
fake_loss = criterion(discriminator(fake_imgs.detach()), fake_labels)
|
91 |
+
d_loss = real_loss + fake_loss
|
92 |
+
d_loss.backward()
|
93 |
+
optimizer_D.step()
|
94 |
+
|
95 |
+
# Train Generator
|
96 |
+
optimizer_G.zero_grad()
|
97 |
+
g_loss = criterion(discriminator(fake_imgs), real_labels)
|
98 |
+
g_loss.backward()
|
99 |
+
optimizer_G.step()
|
100 |
+
|
101 |
+
st.write(f"Epoch [{epoch+1}/{epochs}] | D Loss: {d_loss.item():.4f} | G Loss: {g_loss.item():.4f}")
|
102 |
+
|
103 |
+
st.write("Training completed")
|
104 |
+
|
105 |
+
# Generate and display images
|
106 |
+
z = torch.randn(16, latent_dim)
|
107 |
+
generated_imgs = generator(z).view(-1, 1, 28, 28).data
|
108 |
+
grid = np.transpose(np.array([generated_imgs[i].numpy() for i in range(16)]), (1, 2, 0))
|
109 |
+
|
110 |
+
fig, ax = plt.subplots(figsize=(8, 8))
|
111 |
+
ax.imshow(np.squeeze(grid), cmap="gray")
|
112 |
+
st.pyplot(fig)
|
113 |
+
else:
|
114 |
+
st.write("Click the button to start training the GAN")
|
pages/23_Gan.py
DELETED
@@ -1,84 +0,0 @@
|
|
1 |
-
import torch
|
2 |
-
import torch.nn as nn
|
3 |
-
import torch.optim as optim
|
4 |
-
import torchvision.transforms as transforms
|
5 |
-
import torchvision.utils as vutils
|
6 |
-
import streamlit as st
|
7 |
-
|
8 |
-
# Define the Generator
|
9 |
-
class Generator(nn.Module):
|
10 |
-
def __init__(self):
|
11 |
-
super(Generator, self).__init__()
|
12 |
-
self.main = nn.Sequential(
|
13 |
-
nn.ConvTranspose2d(100, 256, 4, 1, 0, bias=False),
|
14 |
-
nn.BatchNorm2d(256),
|
15 |
-
nn.ReLU(True),
|
16 |
-
nn.ConvTranspose2d(256, 128, 4, 2, 1, bias=False),
|
17 |
-
nn.BatchNorm2d(128),
|
18 |
-
nn.ReLU(True),
|
19 |
-
nn.ConvTranspose2d(128, 64, 4, 2, 1, bias=False),
|
20 |
-
nn.BatchNorm2d(64),
|
21 |
-
nn.ReLU(True),
|
22 |
-
nn.ConvTranspose2d(64, 1, 4, 2, 1, bias=False),
|
23 |
-
nn.Tanh()
|
24 |
-
)
|
25 |
-
|
26 |
-
def forward(self, input):
|
27 |
-
return self.main(input)
|
28 |
-
|
29 |
-
# Define the Discriminator
|
30 |
-
class Discriminator(nn.Module):
|
31 |
-
def __init__(self):
|
32 |
-
super(Discriminator, self).__init__()
|
33 |
-
self.main = nn.Sequential(
|
34 |
-
nn.Conv2d(1, 64, 4, 2, 1, bias=False),
|
35 |
-
nn.LeakyReLU(0.2, inplace=True),
|
36 |
-
nn.Conv2d(64, 128, 4, 2, 1, bias=False),
|
37 |
-
nn.BatchNorm2d(128),
|
38 |
-
nn.LeakyReLU(0.2, inplace=True),
|
39 |
-
nn.Conv2d(128, 256, 4, 2, 1, bias=False),
|
40 |
-
nn.BatchNorm2d(256),
|
41 |
-
nn.LeakyReLU(0.2, inplace=True),
|
42 |
-
nn.Conv2d(256, 1, 4, 1, 0, bias=False),
|
43 |
-
nn.Sigmoid()
|
44 |
-
)
|
45 |
-
|
46 |
-
def forward(self, input):
|
47 |
-
return self.main(input)
|
48 |
-
|
49 |
-
# Initialize the models
|
50 |
-
netG = Generator()
|
51 |
-
netD = Discriminator()
|
52 |
-
|
53 |
-
# Loss function
|
54 |
-
criterion = nn.BCELoss()
|
55 |
-
|
56 |
-
# Optimizers
|
57 |
-
optimizerD = optim.Adam(netD.parameters(), lr=0.0002, betas=(0.5, 0.999))
|
58 |
-
optimizerG = optim.Adam(netG.parameters(), lr=0.0002, betas=(0.5, 0.999))
|
59 |
-
|
60 |
-
# Device
|
61 |
-
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
62 |
-
netG.to(device)
|
63 |
-
netD.to(device)
|
64 |
-
criterion.to(device)
|
65 |
-
|
66 |
-
# Function to generate and save images
|
67 |
-
def generate_images(num_images, noise_dim):
|
68 |
-
netG.eval()
|
69 |
-
noise = torch.randn(num_images, noise_dim, 1, 1, device=device)
|
70 |
-
fake_images = netG(noise)
|
71 |
-
return fake_images
|
72 |
-
|
73 |
-
# Streamlit interface
|
74 |
-
st.title("Simple GAN with Streamlit")
|
75 |
-
st.write("Generate images using a simple GAN")
|
76 |
-
|
77 |
-
num_images = st.slider("Number of images to generate", min_value=1, max_value=64, value=8)
|
78 |
-
noise_dim = 100
|
79 |
-
|
80 |
-
if st.button("Generate Images"):
|
81 |
-
with st.spinner("Generating images..."):
|
82 |
-
fake_images = generate_images(num_images, noise_dim)
|
83 |
-
grid = vutils.make_grid(fake_images.cpu(), padding=2, normalize=True)
|
84 |
-
st.image(grid.permute(1, 2, 0).numpy(), caption="Generated Images")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|