eaglelandsonce commited on
Commit
217480c
·
verified ·
1 Parent(s): 32297cd

Update pages/3_WithExercises.py

Browse files
Files changed (1) hide show
  1. pages/3_WithExercises.py +12 -12
pages/3_WithExercises.py CHANGED
@@ -81,7 +81,7 @@ print("Third column:", column)
81
  # Modifying elements
82
  # Changing the first element of the tensor to 10
83
  tensor[0, 0] = 10
84
- print("Modified tensor:\n", tensor)
85
  '''
86
  },
87
  "Exercise 3: Tensor Reshaping and Transposing": {
@@ -94,16 +94,16 @@ tensor = torch.tensor([[1, 2, 3], [4, 5, 6]])
94
  # Reshaping the tensor
95
  # Changing the shape of the tensor to (3, 2)
96
  reshaped_tensor = tensor.view(3, 2)
97
- print("Reshaped tensor:\n", reshaped_tensor)
98
 
99
  # Another way to reshape using reshape()
100
  reshaped_tensor2 = tensor.reshape(-1) # Flattening the tensor
101
- print("Reshaped tensor (flattened):\n", reshaped_tensor2)
102
 
103
  # Transposing the tensor
104
  # Swapping the dimensions of the tensor (transpose rows and columns)
105
  transposed_tensor = tensor.t()
106
- print("Transposed tensor:\n", transposed_tensor)
107
 
108
  # Using permute for higher-dimensional tensors
109
  tensor_3d = torch.randn(2, 3, 4) # Creating a random 3D tensor
@@ -129,7 +129,7 @@ print("Matrix multiplication result:\n", matmul_result)
129
  tensor3 = torch.tensor([1, 2, 3])
130
  tensor4 = torch.tensor([[1], [2], [3]])
131
  broadcast_result = tensor3 + tensor4
132
- print("Broadcasting result:\n", broadcast_result)
133
 
134
  # Element-wise functions
135
  # Applying sine function element-wise
@@ -152,32 +152,32 @@ print("Square root of tensor3:", sqrt_result)
152
 
153
  # Creating tensors filled with zeros and ones
154
  zeros_tensor = torch.zeros(3, 3)
155
- print("Zeros tensor:\n", zeros_tensor)
156
 
157
  ones_tensor = torch.ones(3, 3)
158
- print("Ones tensor:\n", ones_tensor)
159
 
160
  # Randomly initialized tensors
161
  # Uniform distribution in the range [0, 1)
162
  rand_tensor = torch.rand(3, 3)
163
- print("Uniform random tensor:\n", rand_tensor)
164
 
165
  # Normal distribution with mean 0 and variance 1
166
  randn_tensor = torch.randn(3, 3)
167
- print("Normal random tensor:\n", randn_tensor)
168
 
169
  # Random integers in the range [0, 10)
170
  randint_tensor = torch.randint(0, 10, (3, 3))
171
- print("Random integer tensor:\n", randint_tensor)
172
 
173
  # Initializing tensors with specific distributions
174
  # Normal distribution with custom mean and standard deviation
175
  normal_tensor = torch.normal(mean=0, std=1, size=(3, 3))
176
- print("Normal distribution tensor:\n", normal_tensor)
177
 
178
  # Uniform distribution in a custom range [0, 1)
179
  uniform_tensor = torch.empty(3, 3).uniform_(0, 1)
180
- print("Uniform distribution tensor:\n", uniform_tensor)
181
  '''
182
  },
183
  "Exercise 6: Tensor Arithmetic Operations": {
 
81
  # Modifying elements
82
  # Changing the first element of the tensor to 10
83
  tensor[0, 0] = 10
84
+ print("Modified tensor:", tensor)
85
  '''
86
  },
87
  "Exercise 3: Tensor Reshaping and Transposing": {
 
94
  # Reshaping the tensor
95
  # Changing the shape of the tensor to (3, 2)
96
  reshaped_tensor = tensor.view(3, 2)
97
+ print("Reshaped tensor:", reshaped_tensor)
98
 
99
  # Another way to reshape using reshape()
100
  reshaped_tensor2 = tensor.reshape(-1) # Flattening the tensor
101
+ print("Reshaped tensor (flattened):", reshaped_tensor2)
102
 
103
  # Transposing the tensor
104
  # Swapping the dimensions of the tensor (transpose rows and columns)
105
  transposed_tensor = tensor.t()
106
+ print("Transposed tensor:", transposed_tensor)
107
 
108
  # Using permute for higher-dimensional tensors
109
  tensor_3d = torch.randn(2, 3, 4) # Creating a random 3D tensor
 
129
  tensor3 = torch.tensor([1, 2, 3])
130
  tensor4 = torch.tensor([[1], [2], [3]])
131
  broadcast_result = tensor3 + tensor4
132
+ print("Broadcasting result:", broadcast_result)
133
 
134
  # Element-wise functions
135
  # Applying sine function element-wise
 
152
 
153
  # Creating tensors filled with zeros and ones
154
  zeros_tensor = torch.zeros(3, 3)
155
+ print("Zeros tensor:", zeros_tensor)
156
 
157
  ones_tensor = torch.ones(3, 3)
158
+ print("Ones tensor:", ones_tensor)
159
 
160
  # Randomly initialized tensors
161
  # Uniform distribution in the range [0, 1)
162
  rand_tensor = torch.rand(3, 3)
163
+ print("Uniform random tensor:", rand_tensor)
164
 
165
  # Normal distribution with mean 0 and variance 1
166
  randn_tensor = torch.randn(3, 3)
167
+ print("Normal random tensor:", randn_tensor)
168
 
169
  # Random integers in the range [0, 10)
170
  randint_tensor = torch.randint(0, 10, (3, 3))
171
+ print("Random integer tensor:", randint_tensor)
172
 
173
  # Initializing tensors with specific distributions
174
  # Normal distribution with custom mean and standard deviation
175
  normal_tensor = torch.normal(mean=0, std=1, size=(3, 3))
176
+ print("Normal distribution tensor:", normal_tensor)
177
 
178
  # Uniform distribution in a custom range [0, 1)
179
  uniform_tensor = torch.empty(3, 3).uniform_(0, 1)
180
+ print("Uniform distribution tensor:", uniform_tensor)
181
  '''
182
  },
183
  "Exercise 6: Tensor Arithmetic Operations": {