eaglelandsonce commited on
Commit
46546d3
·
verified ·
1 Parent(s): b8d9743

Update pages/13_FFNN.py

Browse files
Files changed (1) hide show
  1. pages/13_FFNN.py +31 -4
pages/13_FFNN.py CHANGED
@@ -5,6 +5,7 @@ import torch.optim as optim
5
  import torchvision
6
  import torchvision.transforms as transforms
7
  import matplotlib.pyplot as plt
 
8
  import pandas as pd
9
  import numpy as np
10
 
@@ -77,7 +78,14 @@ def test_network(net, testloader):
77
  # Load the data
78
  trainloader, testloader = load_data()
79
 
80
- # Streamlit sidebar for input parameters
 
 
 
 
 
 
 
81
  st.sidebar.header('Model Hyperparameters')
82
  hidden1_size = st.sidebar.slider('Hidden Layer 1 Size', 128, 1024, 512)
83
  hidden2_size = st.sidebar.slider('Hidden Layer 2 Size', 128, 1024, 256)
@@ -86,6 +94,25 @@ learning_rate = st.sidebar.slider('Learning Rate', 0.001, 0.1, 0.01, step=0.001)
86
  momentum = st.sidebar.slider('Momentum', 0.0, 1.0, 0.9, step=0.1)
87
  epochs = st.sidebar.slider('Epochs', 1, 20, 5)
88
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
89
  # Create the network
90
  net = FeedforwardNeuralNetwork(784, hidden1_size, hidden2_size, hidden3_size, 10)
91
  criterion = nn.CrossEntropyLoss()
@@ -116,7 +143,7 @@ if 'trained_model' in st.session_state and st.sidebar.button('Test Network'):
116
  st.write(f'Test Accuracy: {accuracy:.2f}%')
117
 
118
  # Display results in a table
119
- st.write('GroundTruth vs Predicted')
120
  results = pd.DataFrame({
121
  'Ground Truth': all_labels,
122
  'Predicted': all_predicted
@@ -138,9 +165,9 @@ if 'trained_model' in st.session_state and st.sidebar.button('Show Test Results'
138
  outputs = st.session_state['trained_model'](images)
139
  _, predicted = torch.max(outputs, 1)
140
 
141
- st.write('GroundTruth vs Predicted')
142
  results = pd.DataFrame({
143
  'Ground Truth': labels.numpy(),
144
  'Predicted': predicted.numpy()
145
  })
146
- st.table(results)
 
5
  import torchvision
6
  import torchvision.transforms as transforms
7
  import matplotlib.pyplot as plt
8
+ import seaborn as sns
9
  import pandas as pd
10
  import numpy as np
11
 
 
78
  # Load the data
79
  trainloader, testloader = load_data()
80
 
81
+ # Streamlit interface
82
+ st.title("Feedforward Neural Network for MNIST Classification")
83
+
84
+ st.write("""
85
+ This application demonstrates how to build and train a Feedforward Neural Network (FFNN) for image classification using the MNIST dataset. You can adjust hyperparameters, visualize sample images, and see the model's performance.
86
+ """)
87
+
88
+ # Sidebar for input parameters
89
  st.sidebar.header('Model Hyperparameters')
90
  hidden1_size = st.sidebar.slider('Hidden Layer 1 Size', 128, 1024, 512)
91
  hidden2_size = st.sidebar.slider('Hidden Layer 2 Size', 128, 1024, 256)
 
94
  momentum = st.sidebar.slider('Momentum', 0.0, 1.0, 0.9, step=0.1)
95
  epochs = st.sidebar.slider('Epochs', 1, 20, 5)
96
 
97
+ # Display some sample images
98
+ st.write("## Sample Images from MNIST Dataset")
99
+ sample_images, sample_labels = next(iter(trainloader))
100
+ fig, axes = plt.subplots(1, 6, figsize=(15, 5))
101
+ for i in range(6):
102
+ axes[i].imshow(sample_images[i].numpy().squeeze(), cmap='gray')
103
+ axes[i].set_title(f'Label: {sample_labels[i].item()}')
104
+ axes[i].axis('off')
105
+ st.pyplot(fig)
106
+
107
+ # Class distribution
108
+ st.write("## Class Distribution in MNIST Dataset")
109
+ class_counts = np.bincount(sample_labels.numpy())
110
+ fig, ax = plt.subplots()
111
+ sns.barplot(x=list(range(10)), y=class_counts, ax=ax)
112
+ ax.set_ylabel('Count')
113
+ ax.set_title('Class Distribution')
114
+ st.pyplot(fig)
115
+
116
  # Create the network
117
  net = FeedforwardNeuralNetwork(784, hidden1_size, hidden2_size, hidden3_size, 10)
118
  criterion = nn.CrossEntropyLoss()
 
143
  st.write(f'Test Accuracy: {accuracy:.2f}%')
144
 
145
  # Display results in a table
146
+ st.write('Ground Truth vs Predicted')
147
  results = pd.DataFrame({
148
  'Ground Truth': all_labels,
149
  'Predicted': all_predicted
 
165
  outputs = st.session_state['trained_model'](images)
166
  _, predicted = torch.max(outputs, 1)
167
 
168
+ st.write('Ground Truth vs Predicted')
169
  results = pd.DataFrame({
170
  'Ground Truth': labels.numpy(),
171
  'Predicted': predicted.numpy()
172
  })
173
+ st.table(results.head(50)) # Display first 50 results for brevity