Spaces:
Running
Running
Create 11_FFNN.py
Browse files- pages/11_FFNN.py +107 -0
pages/11_FFNN.py
ADDED
@@ -0,0 +1,107 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import torch
|
3 |
+
import torch.nn as nn
|
4 |
+
import torch.optim as optim
|
5 |
+
import torchvision
|
6 |
+
import torchvision.transforms as transforms
|
7 |
+
import matplotlib.pyplot as plt
|
8 |
+
import numpy as np
|
9 |
+
|
10 |
+
# Define the Feedforward Neural Network
|
11 |
+
class FeedforwardNeuralNetwork(nn.Module):
|
12 |
+
def __init__(self, input_size, hidden1_size, hidden2_size, hidden3_size, output_size):
|
13 |
+
super(FeedforwardNeuralNetwork, self).__init__()
|
14 |
+
self.fc1 = nn.Linear(input_size, hidden1_size)
|
15 |
+
self.fc2 = nn.Linear(hidden1_size, hidden2_size)
|
16 |
+
self.fc3 = nn.Linear(hidden2_size, hidden3_size)
|
17 |
+
self.fc4 = nn.Linear(hidden3_size, output_size)
|
18 |
+
self.relu = nn.ReLU()
|
19 |
+
|
20 |
+
def forward(self, x):
|
21 |
+
x = x.view(-1, 28 * 28)
|
22 |
+
x = self.relu(self.fc1(x))
|
23 |
+
x = self.relu(self.fc2(x))
|
24 |
+
x = self.relu(self.fc3(x))
|
25 |
+
x = self.fc4(x)
|
26 |
+
return x
|
27 |
+
|
28 |
+
# Function to load the data
|
29 |
+
@st.cache
|
30 |
+
def load_data():
|
31 |
+
transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.5,), (0.5,))])
|
32 |
+
trainset = torchvision.datasets.MNIST(root='./data', train=True, download=True, transform=transform)
|
33 |
+
testset = torchvision.datasets.MNIST(root='./data', train=False, download=True, transform=transform)
|
34 |
+
trainloader = torch.utils.data.DataLoader(trainset, batch_size=64, shuffle=True)
|
35 |
+
testloader = torch.utils.data.DataLoader(testset, batch_size=64, shuffle=False)
|
36 |
+
return trainloader, testloader
|
37 |
+
|
38 |
+
# Function to train the network
|
39 |
+
def train_network(net, trainloader, criterion, optimizer, epochs):
|
40 |
+
for epoch in range(epochs):
|
41 |
+
running_loss = 0.0
|
42 |
+
for i, data in enumerate(trainloader, 0):
|
43 |
+
inputs, labels = data
|
44 |
+
optimizer.zero_grad()
|
45 |
+
outputs = net(inputs)
|
46 |
+
loss = criterion(outputs, labels)
|
47 |
+
loss.backward()
|
48 |
+
optimizer.step()
|
49 |
+
running_loss += loss.item()
|
50 |
+
st.write(f'Epoch {epoch + 1}: loss {running_loss / len(trainloader):.3f}')
|
51 |
+
st.write('Finished Training')
|
52 |
+
|
53 |
+
# Function to test the network
|
54 |
+
def test_network(net, testloader):
|
55 |
+
correct = 0
|
56 |
+
total = 0
|
57 |
+
with torch.no_grad():
|
58 |
+
for data in testloader:
|
59 |
+
images, labels = data
|
60 |
+
outputs = net(images)
|
61 |
+
_, predicted = torch.max(outputs.data, 1)
|
62 |
+
total += labels.size(0)
|
63 |
+
correct += (predicted == labels).sum().item()
|
64 |
+
st.write(f'Accuracy of the network on the 10000 test images: {100 * correct / total:.2f}%')
|
65 |
+
|
66 |
+
# Load the data
|
67 |
+
trainloader, testloader = load_data()
|
68 |
+
|
69 |
+
# Streamlit sidebar for input parameters
|
70 |
+
st.sidebar.header('Model Hyperparameters')
|
71 |
+
input_size = st.sidebar.slider('Input Size', 784, 784, 784)
|
72 |
+
hidden1_size = st.sidebar.slider('Hidden Layer 1 Size', 128, 1024, 512)
|
73 |
+
hidden2_size = st.sidebar.slider('Hidden Layer 2 Size', 128, 1024, 256)
|
74 |
+
hidden3_size = st.sidebar.slider('Hidden Layer 3 Size', 128, 1024, 128)
|
75 |
+
output_size = st.sidebar.slider('Output Size', 10, 10, 10)
|
76 |
+
learning_rate = st.sidebar.slider('Learning Rate', 0.001, 0.1, 0.01, step=0.001)
|
77 |
+
momentum = st.sidebar.slider('Momentum', 0.0, 1.0, 0.9, step=0.1)
|
78 |
+
epochs = st.sidebar.slider('Epochs', 1, 20, 5)
|
79 |
+
|
80 |
+
# Create the network
|
81 |
+
net = FeedforwardNeuralNetwork(input_size, hidden1_size, hidden2_size, hidden3_size, output_size)
|
82 |
+
criterion = nn.CrossEntropyLoss()
|
83 |
+
optimizer = optim.SGD(net.parameters(), lr=learning_rate, momentum=momentum)
|
84 |
+
|
85 |
+
# Train the network
|
86 |
+
if st.sidebar.button('Train Network'):
|
87 |
+
train_network(net, trainloader, criterion, optimizer, epochs)
|
88 |
+
|
89 |
+
# Test the network
|
90 |
+
if st.sidebar.button('Test Network'):
|
91 |
+
test_network(net, testloader)
|
92 |
+
|
93 |
+
# Visualize some test results
|
94 |
+
def imshow(img):
|
95 |
+
img = img / 2 + 0.5 # unnormalize
|
96 |
+
npimg = img.numpy()
|
97 |
+
plt.imshow(np.transpose(npimg, (1, 2, 0)))
|
98 |
+
plt.show()
|
99 |
+
|
100 |
+
if st.sidebar.button('Show Test Results'):
|
101 |
+
dataiter = iter(testloader)
|
102 |
+
images, labels = dataiter.next()
|
103 |
+
imshow(torchvision.utils.make_grid(images))
|
104 |
+
st.write('GroundTruth: ', ' '.join(f'{labels[j]}' for j in range(8)))
|
105 |
+
outputs = net(images)
|
106 |
+
_, predicted = torch.max(outputs, 1)
|
107 |
+
st.write('Predicted: ', ' '.join(f'{predicted[j]}' for j in range(8)))
|