Spaces:
Running
Running
Update pages/19_ResNet.py
Browse files- pages/19_ResNet.py +104 -16
pages/19_ResNet.py
CHANGED
@@ -35,25 +35,18 @@ transform = transforms.Compose([
|
|
35 |
transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225))
|
36 |
])
|
37 |
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
val_size = len(subset_indices) - train_size
|
45 |
-
|
46 |
-
train_indices = subset_indices[:train_size]
|
47 |
-
val_indices = subset_indices[train_size:]
|
48 |
-
|
49 |
-
train_dataset = Subset(train_dataset, train_indices)
|
50 |
-
val_dataset = Subset(val_dataset, val_indices)
|
51 |
|
52 |
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True, num_workers=4)
|
53 |
val_loader = DataLoader(val_dataset, batch_size=batch_size, shuffle=False, num_workers=4)
|
54 |
|
55 |
dataloaders = {'train': train_loader, 'val': val_loader}
|
56 |
-
class_names =
|
57 |
|
58 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
59 |
|
@@ -78,8 +71,103 @@ imshow(out, title=[class_names[x] for x in classes])
|
|
78 |
# Model Preparation Section
|
79 |
st.markdown("""
|
80 |
### Model Preparation
|
81 |
-
We will use a pre-trained ResNet-18 model and fine-tune the final fully connected layer to match the number of classes in our dataset.
|
82 |
""")
|
83 |
|
84 |
# Load Pre-trained ResNet Model
|
85 |
-
model_ft = models.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225))
|
36 |
])
|
37 |
|
38 |
+
full_dataset = datasets.CIFAR10(root='./data', train=True, download=True, transform=transform)
|
39 |
+
subset_indices = list(range(1000)) # Use only 1000 samples for simplicity
|
40 |
+
subset_dataset = Subset(full_dataset, subset_indices)
|
41 |
+
train_size = int(0.8 * len(subset_dataset))
|
42 |
+
val_size = len(subset_dataset) - train_size
|
43 |
+
train_dataset, val_dataset = torch.utils.data.random_split(subset_dataset, [train_size, val_size])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
|
45 |
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True, num_workers=4)
|
46 |
val_loader = DataLoader(val_dataset, batch_size=batch_size, shuffle=False, num_workers=4)
|
47 |
|
48 |
dataloaders = {'train': train_loader, 'val': val_loader}
|
49 |
+
class_names = full_dataset.classes
|
50 |
|
51 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
52 |
|
|
|
71 |
# Model Preparation Section
|
72 |
st.markdown("""
|
73 |
### Model Preparation
|
74 |
+
We will use a pre-trained ResNet-18 model and fine-tune the final fully connected layer to match the number of classes in our custom dataset.
|
75 |
""")
|
76 |
|
77 |
# Load Pre-trained ResNet Model
|
78 |
+
model_ft = models.resnet18(pretrained=True)
|
79 |
+
num_ftrs = model_ft.fc.in_features
|
80 |
+
model_ft.fc = nn.Linear(num_ftrs, len(class_names))
|
81 |
+
|
82 |
+
model_ft = model_ft.to(device)
|
83 |
+
|
84 |
+
# Define Loss Function and Optimizer
|
85 |
+
criterion = nn.CrossEntropyLoss()
|
86 |
+
optimizer_ft = optim.SGD(model_ft.parameters(), lr=learning_rate, momentum=0.9)
|
87 |
+
|
88 |
+
# Training Section
|
89 |
+
st.markdown("""
|
90 |
+
### Training
|
91 |
+
We will train the model using stochastic gradient descent (SGD) with a learning rate scheduler. The training and validation loss and accuracy will be plotted to monitor the training process.
|
92 |
+
""")
|
93 |
+
|
94 |
+
# Train and Evaluate the Model
|
95 |
+
def train_model(model, criterion, optimizer, num_epochs=5):
|
96 |
+
best_model_wts = copy.deepcopy(model.state_dict())
|
97 |
+
best_acc = 0.0
|
98 |
+
train_loss_history = []
|
99 |
+
val_loss_history = []
|
100 |
+
train_acc_history = []
|
101 |
+
val_acc_history = []
|
102 |
+
|
103 |
+
for epoch in range(num_epochs):
|
104 |
+
st.write(f'Epoch {epoch+1}/{num_epochs}')
|
105 |
+
st.write('-' * 10)
|
106 |
+
|
107 |
+
for phase in ['train', 'val']:
|
108 |
+
if phase == 'train':
|
109 |
+
model.train()
|
110 |
+
else:
|
111 |
+
model.eval()
|
112 |
+
|
113 |
+
running_loss = 0.0
|
114 |
+
running_corrects = 0
|
115 |
+
|
116 |
+
for inputs, labels in dataloaders[phase]:
|
117 |
+
inputs = inputs.to(device)
|
118 |
+
labels = labels.to(device)
|
119 |
+
|
120 |
+
optimizer.zero_grad()
|
121 |
+
|
122 |
+
with torch.set_grad_enabled(phase == 'train'):
|
123 |
+
outputs = model(inputs)
|
124 |
+
_, preds = torch.max(outputs, 1)
|
125 |
+
loss = criterion(outputs, labels)
|
126 |
+
|
127 |
+
if phase == 'train':
|
128 |
+
loss.backward()
|
129 |
+
optimizer.step()
|
130 |
+
|
131 |
+
running_loss += loss.item() * inputs.size(0)
|
132 |
+
running_corrects += torch.sum(preds == labels.data)
|
133 |
+
|
134 |
+
epoch_loss = running_loss / len(dataloaders[phase].dataset)
|
135 |
+
epoch_acc = running_corrects.double() / len(dataloaders[phase].dataset)
|
136 |
+
|
137 |
+
if phase == 'train':
|
138 |
+
train_loss_history.append(epoch_loss)
|
139 |
+
train_acc_history.append(epoch_acc)
|
140 |
+
else:
|
141 |
+
val_loss_history.append(epoch_loss)
|
142 |
+
val_acc_history.append(epoch_acc)
|
143 |
+
|
144 |
+
st.write(f'{phase} Loss: {epoch_loss:.4f} Acc: {epoch_acc:.4f}')
|
145 |
+
|
146 |
+
if phase == 'val' and epoch_acc > best_acc:
|
147 |
+
best_acc = epoch_acc
|
148 |
+
best_model_wts = copy.deepcopy(model.state_dict())
|
149 |
+
|
150 |
+
model.load_state_dict(best_model_wts)
|
151 |
+
|
152 |
+
# Plot training history
|
153 |
+
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(15, 5))
|
154 |
+
ax1.plot(train_loss_history, label='Training Loss')
|
155 |
+
ax1.plot(val_loss_history, label='Validation Loss')
|
156 |
+
ax1.legend(loc='upper right')
|
157 |
+
ax1.set_title('Training and Validation Loss')
|
158 |
+
|
159 |
+
ax2.plot(train_acc_history, label='Training Accuracy')
|
160 |
+
ax2.plot(val_acc_history, label='Validation Accuracy')
|
161 |
+
ax2.legend(loc='lower right')
|
162 |
+
ax2.set_title('Training and Validation Accuracy')
|
163 |
+
|
164 |
+
st.pyplot(fig)
|
165 |
+
|
166 |
+
return model
|
167 |
+
|
168 |
+
if st.button('Train Model'):
|
169 |
+
model_ft = train_model(model_ft, criterion, optimizer_ft, num_epochs)
|
170 |
+
# Save the Model
|
171 |
+
torch.save(model_ft.state_dict(), 'fine_tuned_resnet.pth')
|
172 |
+
st.write("Model saved as 'fine_tuned_resnet.pth'")
|
173 |
+
|