eaglelandsonce commited on
Commit
669454f
·
verified ·
1 Parent(s): 7d4fafb

Rename pages/1_MNIST_With_Images.py to pages/1_Simple_CNN.py

Browse files
pages/{1_MNIST_With_Images.py → 1_Simple_CNN.py} RENAMED
@@ -5,49 +5,51 @@ import torch.optim as optim
5
  import torchvision
6
  import torchvision.transforms as transforms
7
  import matplotlib.pyplot as plt
 
8
 
9
- # Define the neural network
10
- class Net(nn.Module):
11
  def __init__(self):
12
- super(Net, self).__init__()
13
- self.fc1 = nn.Linear(28 * 28, 128)
14
- self.fc2 = nn.Linear(128, 64)
15
- self.fc3 = nn.Linear(64, 10)
 
 
16
 
17
  def forward(self, x):
18
- x = x.view(-1, 28 * 28)
 
 
19
  x = torch.relu(self.fc1(x))
20
- x = torch.relu(self.fc2(x))
21
- x = self.fc3(x)
22
  return x
23
 
24
  # Function to train the model
25
  def train_model(num_epochs):
26
- # Define transformations
27
  transform = transforms.Compose([
28
  transforms.ToTensor(),
29
- transforms.Normalize((0.5,), (0.5,))
30
  ])
31
 
32
- # Load datasets
33
- trainset = torchvision.datasets.MNIST(root='./data', train=True, download=True, transform=transform)
34
  trainloader = torch.utils.data.DataLoader(trainset, batch_size=64, shuffle=True)
35
 
36
- testset = torchvision.datasets.MNIST(root='./data', train=False, download=True, transform=transform)
37
  testloader = torch.utils.data.DataLoader(testset, batch_size=64, shuffle=False)
38
 
39
- # Display sample images
40
- display_sample_images(trainloader)
 
 
41
 
42
- # Initialize the network, loss function, and optimizer
43
- net = Net()
44
  criterion = nn.CrossEntropyLoss()
45
  optimizer = optim.SGD(net.parameters(), lr=0.01, momentum=0.9)
46
 
47
- # Track loss over epochs
48
  loss_values = []
 
49
 
50
- # Training loop
51
  for epoch in range(num_epochs):
52
  running_loss = 0.0
53
  for i, data in enumerate(trainloader, 0):
@@ -58,11 +60,8 @@ def train_model(num_epochs):
58
  loss.backward()
59
  optimizer.step()
60
  running_loss += loss.item()
61
-
62
- # Append average loss for this epoch
63
  loss_values.append(running_loss / len(trainloader))
64
  st.write(f'Epoch {epoch + 1}, Loss: {running_loss / len(trainloader):.3f}')
65
-
66
  st.write('Finished Training')
67
 
68
  # Plot the loss values
@@ -73,36 +72,39 @@ def train_model(num_epochs):
73
  plt.ylabel('Loss')
74
  st.pyplot(plt)
75
 
76
- # Evaluate the network on the test data
77
  correct = 0
78
  total = 0
79
  with torch.no_grad():
80
  for data in testloader:
81
  images, labels = data
82
  outputs = net(images)
83
- _, predicted = torch.max(outputs.data, 1)
84
  total += labels.size(0)
85
  correct += (predicted == labels).sum().item()
86
 
87
  st.write(f'Accuracy of the network on the 10000 test images: {100 * correct / total}%')
88
 
89
- # Function to display sample images
90
- def display_sample_images(loader):
91
- dataiter = iter(loader)
 
 
 
 
 
92
  images, labels = dataiter.next()
93
- images = images[:5]
94
- labels = labels[:5]
95
 
96
- fig, axes = plt.subplots(1, 5, figsize=(15, 3))
97
- for i in range(5):
98
- ax = axes[i]
99
- ax.imshow(images[i].numpy().squeeze(), cmap='gray')
100
- ax.set_title(f'Label: {labels[i].item()}')
101
- ax.axis('off')
102
- st.pyplot(fig)
 
103
 
104
  # Streamlit interface
105
- st.title('MNIST Digit Classification with PyTorch')
106
  num_epochs = st.number_input('Enter number of epochs:', min_value=1, max_value=100, value=10)
107
  if st.button('Run'):
108
  train_model(num_epochs)
 
5
  import torchvision
6
  import torchvision.transforms as transforms
7
  import matplotlib.pyplot as plt
8
+ import numpy as np
9
 
10
+ # Define the CNN
11
+ class SimpleCNN(nn.Module):
12
  def __init__(self):
13
+ super(SimpleCNN, self).__init__()
14
+ self.conv1 = nn.Conv2d(3, 16, 3, padding=1)
15
+ self.conv2 = nn.Conv2d(16, 32, 3, padding=1)
16
+ self.pool = nn.MaxPool2d(2, 2)
17
+ self.fc1 = nn.Linear(32 * 8 * 8, 128)
18
+ self.fc2 = nn.Linear(128, 10)
19
 
20
  def forward(self, x):
21
+ x = self.pool(torch.relu(self.conv1(x)))
22
+ x = self.pool(torch.relu(self.conv2(x)))
23
+ x = x.view(-1, 32 * 8 * 8)
24
  x = torch.relu(self.fc1(x))
25
+ x = self.fc2(x)
 
26
  return x
27
 
28
  # Function to train the model
29
  def train_model(num_epochs):
 
30
  transform = transforms.Compose([
31
  transforms.ToTensor(),
32
+ transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
33
  ])
34
 
35
+ trainset = torchvision.datasets.CIFAR10(root='./data', train=True, download=True, transform=transform)
 
36
  trainloader = torch.utils.data.DataLoader(trainset, batch_size=64, shuffle=True)
37
 
38
+ testset = torchvision.datasets.CIFAR10(root='./data', train=False, download=True, transform=transform)
39
  testloader = torch.utils.data.DataLoader(testset, batch_size=64, shuffle=False)
40
 
41
+ CIFAR10_CLASSES = [
42
+ 'plane', 'car', 'bird', 'cat', 'deer',
43
+ 'dog', 'frog', 'horse', 'ship', 'truck'
44
+ ]
45
 
46
+ net = SimpleCNN()
 
47
  criterion = nn.CrossEntropyLoss()
48
  optimizer = optim.SGD(net.parameters(), lr=0.01, momentum=0.9)
49
 
 
50
  loss_values = []
51
+ st.write("Training the model...")
52
 
 
53
  for epoch in range(num_epochs):
54
  running_loss = 0.0
55
  for i, data in enumerate(trainloader, 0):
 
60
  loss.backward()
61
  optimizer.step()
62
  running_loss += loss.item()
 
 
63
  loss_values.append(running_loss / len(trainloader))
64
  st.write(f'Epoch {epoch + 1}, Loss: {running_loss / len(trainloader):.3f}')
 
65
  st.write('Finished Training')
66
 
67
  # Plot the loss values
 
72
  plt.ylabel('Loss')
73
  st.pyplot(plt)
74
 
 
75
  correct = 0
76
  total = 0
77
  with torch.no_grad():
78
  for data in testloader:
79
  images, labels = data
80
  outputs = net(images)
81
+ _, predicted = torch.max(outputs, 1)
82
  total += labels.size(0)
83
  correct += (predicted == labels).sum().item()
84
 
85
  st.write(f'Accuracy of the network on the 10000 test images: {100 * correct / total}%')
86
 
87
+ # Visualize some test images and their predictions
88
+ def imshow(img):
89
+ img = img / 2 + 0.5 # Unnormalize
90
+ npimg = img.numpy()
91
+ plt.imshow(np.transpose(npimg, (1, 2, 0)))
92
+ plt.show()
93
+
94
+ dataiter = iter(testloader)
95
  images, labels = dataiter.next()
 
 
96
 
97
+ imshow(torchvision.utils.make_grid(images))
98
+
99
+ outputs = net(images)
100
+ _, predicted = torch.max(outputs, 1)
101
+
102
+ st.write('Predicted: ', ' '.join(f'{CIFAR10_CLASSES[predicted[j]]:5s}' for j in range(8)))
103
+ st.write('Actual: ', ' '.join(f'{CIFAR10_CLASSES[labels[j]]:5s}' for j in range(8)))
104
+ st.pyplot()
105
 
106
  # Streamlit interface
107
+ st.title('CIFAR-10 Classification with PyTorch')
108
  num_epochs = st.number_input('Enter number of epochs:', min_value=1, max_value=100, value=10)
109
  if st.button('Run'):
110
  train_model(num_epochs)