Spaces:
Running
Running
Update pages/2_LinearRegression.py
Browse files- pages/2_LinearRegression.py +82 -1
pages/2_LinearRegression.py
CHANGED
@@ -1 +1,82 @@
|
|
1 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import torch
|
3 |
+
import torch.nn as nn
|
4 |
+
import torch.optim as optim
|
5 |
+
import matplotlib.pyplot as plt
|
6 |
+
|
7 |
+
# Define the dataset
|
8 |
+
def generate_data(n_samples):
|
9 |
+
torch.manual_seed(42)
|
10 |
+
X = torch.randn(n_samples, 1) * 10
|
11 |
+
y = 2 * X + 3 + torch.randn(n_samples, 1) * 3
|
12 |
+
return X, y
|
13 |
+
|
14 |
+
# Define the linear regression model
|
15 |
+
class LinearRegressionModel(nn.Module):
|
16 |
+
def __init__(self):
|
17 |
+
super(LinearRegressionModel, self).__init__()
|
18 |
+
self.linear = nn.Linear(1, 1)
|
19 |
+
|
20 |
+
def forward(self, x):
|
21 |
+
return self.linear(x)
|
22 |
+
|
23 |
+
# Train the model
|
24 |
+
def train_model(X, y, lr, epochs):
|
25 |
+
model = LinearRegressionModel()
|
26 |
+
criterion = nn.MSELoss()
|
27 |
+
optimizer = optim.SGD(model.parameters(), lr=lr)
|
28 |
+
|
29 |
+
for epoch in range(epochs):
|
30 |
+
model.train()
|
31 |
+
optimizer.zero_grad()
|
32 |
+
outputs = model(X)
|
33 |
+
loss = criterion(outputs, y)
|
34 |
+
loss.backward()
|
35 |
+
optimizer.step()
|
36 |
+
|
37 |
+
return model
|
38 |
+
|
39 |
+
# Plot the results
|
40 |
+
def plot_results(X, y, model):
|
41 |
+
plt.scatter(X.numpy(), y.numpy(), label='Original data')
|
42 |
+
plt.plot(X.numpy(), model(X).detach().numpy(), label='Fitted line', color='r')
|
43 |
+
plt.legend()
|
44 |
+
plt.xlabel('X')
|
45 |
+
plt.ylabel('y')
|
46 |
+
st.pyplot(plt.gcf())
|
47 |
+
|
48 |
+
# Streamlit interface
|
49 |
+
st.title('Simple Linear Regression with PyTorch')
|
50 |
+
n_samples = st.slider('Number of samples', 20, 100, 50)
|
51 |
+
learning_rate = st.slider('Learning rate', 0.001, 0.1, 0.01)
|
52 |
+
epochs = st.slider('Number of epochs', 100, 1000, 500)
|
53 |
+
|
54 |
+
X, y = generate_data(n_samples)
|
55 |
+
model = train_model(X, y, learning_rate, epochs)
|
56 |
+
|
57 |
+
st.subheader('Training Data')
|
58 |
+
plot_results(X, y, model)
|
59 |
+
|
60 |
+
st.subheader('Model Parameters')
|
61 |
+
st.write(f'Weight: {model.linear.weight.item()}')
|
62 |
+
st.write(f'Bias: {model.linear.bias.item()}')
|
63 |
+
|
64 |
+
st.subheader('Loss Curve')
|
65 |
+
losses = []
|
66 |
+
model = LinearRegressionModel()
|
67 |
+
criterion = nn.MSELoss()
|
68 |
+
optimizer = optim.SGD(model.parameters(), lr=learning_rate)
|
69 |
+
for epoch in range(epochs):
|
70 |
+
model.train()
|
71 |
+
optimizer.zero_grad()
|
72 |
+
outputs = model(X)
|
73 |
+
loss = criterion(outputs, y)
|
74 |
+
loss.backward()
|
75 |
+
optimizer.step()
|
76 |
+
losses.append(loss.item())
|
77 |
+
|
78 |
+
plt.figure()
|
79 |
+
plt.plot(range(epochs), losses)
|
80 |
+
plt.xlabel('Epoch')
|
81 |
+
plt.ylabel('Loss')
|
82 |
+
st.pyplot(plt.gcf())
|