Spaces:
Running
Running
Delete pages/17_RNN_News.py
Browse files- pages/17_RNN_News.py +0 -190
pages/17_RNN_News.py
DELETED
@@ -1,190 +0,0 @@
|
|
1 |
-
import streamlit as st
|
2 |
-
import torch
|
3 |
-
import torch.nn as nn
|
4 |
-
import torch.optim as optim
|
5 |
-
from torchtext.data.utils import get_tokenizer
|
6 |
-
from torchtext.vocab import build_vocab_from_iterator
|
7 |
-
from torchtext.datasets import AG_NEWS
|
8 |
-
from torch.utils.data import DataLoader, random_split
|
9 |
-
from torch.nn.utils.rnn import pad_sequence
|
10 |
-
import matplotlib.pyplot as plt
|
11 |
-
import pandas as pd
|
12 |
-
|
13 |
-
# Define the RNN model
|
14 |
-
class RNN(nn.Module):
|
15 |
-
def __init__(self, vocab_size, embed_size, hidden_size, output_size, n_layers, dropout):
|
16 |
-
super(RNN, self).__init__()
|
17 |
-
self.embedding = nn.Embedding(vocab_size, embed_size)
|
18 |
-
self.rnn = nn.RNN(embed_size, hidden_size, n_layers, dropout=dropout, batch_first=True)
|
19 |
-
self.fc = nn.Linear(hidden_size, output_size)
|
20 |
-
self.dropout = nn.Dropout(dropout)
|
21 |
-
|
22 |
-
def forward(self, x):
|
23 |
-
x = self.dropout(self.embedding(x))
|
24 |
-
h0 = torch.zeros(n_layers, x.size(0), hidden_size).to(device)
|
25 |
-
out, _ = self.rnn(x, h0)
|
26 |
-
out = self.fc(out[:, -1, :])
|
27 |
-
return out
|
28 |
-
|
29 |
-
# Create a custom collate function to pad sequences
|
30 |
-
def collate_batch(batch):
|
31 |
-
label_list, text_list = [], []
|
32 |
-
for _label, _text in batch:
|
33 |
-
label_list.append(label_pipeline(_label))
|
34 |
-
processed_text = torch.tensor(text_pipeline(_text), dtype=torch.int64)
|
35 |
-
text_list.append(processed_text)
|
36 |
-
labels = torch.tensor(label_list, dtype=torch.int64)
|
37 |
-
texts = pad_sequence(text_list, batch_first=True, padding_value=vocab["<pad>"])
|
38 |
-
return texts, labels
|
39 |
-
|
40 |
-
# Function to load the data
|
41 |
-
@st.cache_data
|
42 |
-
def load_data():
|
43 |
-
tokenizer = get_tokenizer("basic_english")
|
44 |
-
train_iter = AG_NEWS(split='train')
|
45 |
-
test_iter = AG_NEWS(split='test')
|
46 |
-
|
47 |
-
def yield_tokens(data_iter):
|
48 |
-
for _, text in data_iter:
|
49 |
-
yield tokenizer(text)
|
50 |
-
|
51 |
-
vocab = build_vocab_from_iterator(yield_tokens(train_iter), specials=["<unk>", "<pad>"])
|
52 |
-
vocab.set_default_index(vocab["<unk>"])
|
53 |
-
|
54 |
-
return vocab, tokenizer, list(train_iter), list(test_iter)
|
55 |
-
|
56 |
-
# Initialize global pipelines
|
57 |
-
vocab, tokenizer, train_dataset, test_dataset = load_data()
|
58 |
-
text_pipeline = lambda x: vocab(tokenizer(x))
|
59 |
-
label_pipeline = lambda x: int(x) - 1
|
60 |
-
|
61 |
-
# Create DataLoaders
|
62 |
-
train_size = int(0.8 * len(train_dataset))
|
63 |
-
valid_size = len(train_dataset) - train_size
|
64 |
-
train_dataset, valid_dataset = random_split(train_dataset, [train_size, valid_size])
|
65 |
-
|
66 |
-
BATCH_SIZE = 64
|
67 |
-
train_loader = DataLoader(train_dataset, batch_size=BATCH_SIZE, shuffle=True, collate_fn=collate_batch)
|
68 |
-
valid_loader = DataLoader(valid_dataset, batch_size=BATCH_SIZE, shuffle=True, collate_fn=collate_batch)
|
69 |
-
test_loader = DataLoader(test_dataset, batch_size=BATCH_SIZE, shuffle=True, collate_fn=collate_batch)
|
70 |
-
|
71 |
-
# Function to train the network
|
72 |
-
def train_network(net, iterator, optimizer, criterion, epochs):
|
73 |
-
loss_values = []
|
74 |
-
for epoch in range(epochs):
|
75 |
-
epoch_loss = 0
|
76 |
-
net.train()
|
77 |
-
for texts, labels in iterator:
|
78 |
-
texts, labels = texts.to(device), labels.to(device)
|
79 |
-
optimizer.zero_grad()
|
80 |
-
predictions = net(texts)
|
81 |
-
loss = criterion(predictions, labels)
|
82 |
-
loss.backward()
|
83 |
-
optimizer.step()
|
84 |
-
epoch_loss += loss.item()
|
85 |
-
epoch_loss /= len(iterator)
|
86 |
-
loss_values.append(epoch_loss)
|
87 |
-
st.write(f'Epoch {epoch + 1}: loss {epoch_loss:.3f}')
|
88 |
-
st.write('Finished Training')
|
89 |
-
return loss_values
|
90 |
-
|
91 |
-
# Function to evaluate the network
|
92 |
-
def evaluate_network(net, iterator, criterion):
|
93 |
-
epoch_loss = 0
|
94 |
-
correct = 0
|
95 |
-
total = 0
|
96 |
-
all_labels = []
|
97 |
-
all_predictions = []
|
98 |
-
net.eval()
|
99 |
-
with torch.no_grad():
|
100 |
-
for texts, labels in iterator:
|
101 |
-
texts, labels = texts.to(device), labels.to(device)
|
102 |
-
predictions = net(texts)
|
103 |
-
loss = criterion(predictions, labels)
|
104 |
-
epoch_loss += loss.item()
|
105 |
-
_, predicted = torch.max(predictions, 1)
|
106 |
-
correct += (predicted == labels).sum().item()
|
107 |
-
total += len(labels)
|
108 |
-
all_labels.extend(labels.cpu().numpy())
|
109 |
-
all_predictions.extend(predicted.cpu().numpy())
|
110 |
-
accuracy = 100 * correct / total
|
111 |
-
st.write(f'Loss: {epoch_loss / len(iterator):.4f}, Accuracy: {accuracy:.2f}%')
|
112 |
-
return accuracy, all_labels, all_predictions
|
113 |
-
|
114 |
-
# Load data
|
115 |
-
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
116 |
-
|
117 |
-
# Streamlit interface
|
118 |
-
st.title("RNN for Text Classification on AG News Dataset")
|
119 |
-
|
120 |
-
st.write("""
|
121 |
-
This application demonstrates how to build and train a Recurrent Neural Network (RNN) for text classification using the AG News dataset. You can adjust hyperparameters, visualize sample data, and see the model's performance.
|
122 |
-
""")
|
123 |
-
|
124 |
-
# Sidebar for input parameters
|
125 |
-
st.sidebar.header('Model Hyperparameters')
|
126 |
-
embed_size = st.sidebar.slider('Embedding Size', 50, 300, 100)
|
127 |
-
hidden_size = st.sidebar.slider('Hidden Size', 50, 300, 256)
|
128 |
-
n_layers = st.sidebar.slider('Number of RNN Layers', 1, 3, 2)
|
129 |
-
dropout = st.sidebar.slider('Dropout', 0.0, 0.5, 0.2, step=0.1)
|
130 |
-
learning_rate = st.sidebar.slider('Learning Rate', 0.001, 0.1, 0.01, step=0.001)
|
131 |
-
epochs = st.sidebar.slider('Epochs', 1, 20, 5)
|
132 |
-
|
133 |
-
# Create the network
|
134 |
-
vocab_size = len(vocab)
|
135 |
-
output_size = 4 # Number of classes in AG_NEWS
|
136 |
-
net = RNN(vocab_size, embed_size, hidden_size, output_size, n_layers, dropout).to(device)
|
137 |
-
criterion = nn.CrossEntropyLoss()
|
138 |
-
optimizer = optim.Adam(net.parameters(), lr=learning_rate)
|
139 |
-
|
140 |
-
# Add vertical space
|
141 |
-
st.write('\n' * 10)
|
142 |
-
|
143 |
-
# Train the network
|
144 |
-
if st.sidebar.button('Train Network'):
|
145 |
-
loss_values = train_network(net, train_loader, optimizer, criterion, epochs)
|
146 |
-
|
147 |
-
# Plot the loss values
|
148 |
-
plt.figure(figsize=(10, 5))
|
149 |
-
plt.plot(range(1, epochs + 1), loss_values, marker='o')
|
150 |
-
plt.title('Training Loss Over Epochs')
|
151 |
-
plt.xlabel('Epoch')
|
152 |
-
plt.ylabel('Loss')
|
153 |
-
plt.grid(True)
|
154 |
-
st.pyplot(plt)
|
155 |
-
|
156 |
-
# Store the trained model in the session state
|
157 |
-
st.session_state['trained_model'] = net
|
158 |
-
|
159 |
-
# Test the network
|
160 |
-
if 'trained_model' in st.session_state and st.sidebar.button('Test Network'):
|
161 |
-
accuracy, all_labels, all_predictions = evaluate_network(st.session_state['trained_model'], test_loader, criterion)
|
162 |
-
st.write(f'Test Accuracy: {accuracy:.2f}%')
|
163 |
-
|
164 |
-
# Display results in a table
|
165 |
-
st.write('Ground Truth vs Predicted')
|
166 |
-
results = pd.DataFrame({
|
167 |
-
'Ground Truth': all_labels,
|
168 |
-
'Predicted': all_predictions
|
169 |
-
})
|
170 |
-
st.table(results.head(50)) # Display first 50 results for brevity
|
171 |
-
|
172 |
-
# Visualize some test results
|
173 |
-
def visualize_text_predictions(iterator, net):
|
174 |
-
net.eval()
|
175 |
-
samples = []
|
176 |
-
with torch.no_grad():
|
177 |
-
for texts, labels in iterator:
|
178 |
-
predictions = torch.max(net(texts), 1)[1]
|
179 |
-
samples.extend(zip(texts.cpu(), labels.cpu(), predictions.cpu()))
|
180 |
-
if len(samples) >= 10:
|
181 |
-
break
|
182 |
-
return samples[:10]
|
183 |
-
|
184 |
-
if 'trained_model' in st.session_state and st.sidebar.button('Show Test Results'):
|
185 |
-
samples = visualize_text_predictions(test_loader, st.session_state['trained_model'])
|
186 |
-
st.write('Ground Truth vs Predicted for Sample Texts')
|
187 |
-
for i, (text, true_label, predicted) in enumerate(samples):
|
188 |
-
st.write(f'Sample {i+1}')
|
189 |
-
st.text(' '.join([vocab.get_itos()[token] for token in text]))
|
190 |
-
st.write(f'Ground Truth: {true_label.item()}, Predicted: {predicted.item()}')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|