eaglelandsonce commited on
Commit
92c5d90
·
verified ·
1 Parent(s): 9beed27

Delete pages/19_RNN_LSTM_Shakespeare.py

Browse files
Files changed (1) hide show
  1. pages/19_RNN_LSTM_Shakespeare.py +0 -113
pages/19_RNN_LSTM_Shakespeare.py DELETED
@@ -1,113 +0,0 @@
1
- import streamlit as st
2
- import torch
3
- import torch.nn as nn
4
- import torch.optim as optim
5
- import numpy as np
6
-
7
- # Define the RNN or LSTM Model
8
- class LSTMModel(nn.Module):
9
- def __init__(self, input_size, hidden_size, output_size, num_layers):
10
- super(LSTMModel, self).__init__()
11
- self.hidden_size = hidden_size
12
- self.num_layers = num_layers
13
- self.lstm = nn.LSTM(input_size, hidden_size, num_layers, batch_first=True)
14
- self.fc = nn.Linear(hidden_size, output_size)
15
-
16
- def forward(self, x, h):
17
- out, h = self.lstm(x, h)
18
- out = self.fc(out[:, -1, :])
19
- return out, h
20
-
21
- # Text generation function
22
- def generate_text(model, start_str, length, char_to_int, int_to_char, num_layers, hidden_size):
23
- model.eval()
24
- input_seq = [char_to_int[c] for c in start_str]
25
- input_seq = torch.tensor(input_seq, dtype=torch.float32).unsqueeze(0).unsqueeze(-1)
26
- h = (torch.zeros(num_layers, 1, hidden_size), torch.zeros(num_layers, 1, hidden_size))
27
- generated_text = start_str
28
-
29
- for _ in range(length):
30
- output, h = model(input_seq, h)
31
- _, predicted = torch.max(output, 1)
32
- predicted_char = int_to_char[predicted.item()]
33
- generated_text += predicted_char
34
- input_seq = torch.tensor([char_to_int[predicted_char]], dtype=torch.float32).unsqueeze(0).unsqueeze(-1)
35
-
36
- return generated_text
37
-
38
- # Streamlit interface
39
- st.title("RNN/LSTM Text Generation")
40
-
41
- # Inputs
42
- text_data = st.text_area("Enter your text data for training:", "To be, or not to be, that is the question:\nWhether 'tis nobler in the mind to suffer\nThe slings and arrows of outrageous fortune,\nOr to take arms against a sea of troubles\nAnd by opposing end them. To die: to sleep;\nNo more; and by a sleep to say we end\nThe heart-ache and the thousand natural shocks\nThat flesh is heir to, 'tis a consummation\nDevoutly to be wish'd. To die, to sleep;\nTo sleep: perchance to dream: ay, there's the rub;\nFor in that sleep of death what dreams may come\nWhen we have shuffled off this mortal coil,\nMust give us pause: there's the respect\nThat makes calamity of so long life;")
43
- start_string = st.text_input("Enter the start string for text generation:")
44
- seq_length = st.number_input("Sequence length:", min_value=10, value=100)
45
- hidden_size = st.number_input("Hidden size:", min_value=50, value=256)
46
- num_layers = st.number_input("Number of layers:", min_value=1, value=2)
47
- learning_rate = st.number_input("Learning rate:", min_value=0.0001, value=0.003, format="%.4f")
48
- num_epochs = st.number_input("Number of epochs:", min_value=1, value=20)
49
- generate_length = st.number_input("Generated text length:", min_value=50, value=500)
50
-
51
- if st.button("Train and Generate"):
52
- # Data Preparation
53
- text = text_data
54
- if len(text) <= seq_length:
55
- st.error("Text data is too short for the given sequence length. Please enter more text data.")
56
- else:
57
- chars = sorted(list(set(text)))
58
- char_to_int = {c: i for i, c in enumerate(chars)}
59
- int_to_char = {i: c for i, c in enumerate(chars)}
60
-
61
- # Prepare input-output pairs
62
- dataX = []
63
- dataY = []
64
- for i in range(0, len(text) - seq_length):
65
- seq_in = text[i:i + seq_length]
66
- seq_out = text[i + seq_length]
67
- dataX.append([char_to_int[char] for char in seq_in])
68
- dataY.append(char_to_int[seq_out])
69
-
70
- if len(dataX) == 0:
71
- st.error("Not enough data to create input-output pairs. Please provide more text data.")
72
- else:
73
- X = np.reshape(dataX, (len(dataX), seq_length, 1))
74
- X = X / float(len(chars))
75
- Y = np.array(dataY)
76
-
77
- # Convert to PyTorch tensors
78
- X_tensor = torch.tensor(X, dtype=torch.float32)
79
- Y_tensor = torch.tensor(Y, dtype=torch.long)
80
-
81
- # Model initialization
82
- model = LSTMModel(input_size=1, hidden_size=hidden_size, output_size=len(chars), num_layers=num_layers)
83
-
84
- # Loss and optimizer
85
- criterion = nn.CrossEntropyLoss()
86
- optimizer = optim.Adam(model.parameters(), lr=learning_rate)
87
-
88
- # Training the model
89
- for epoch in range(num_epochs):
90
- h = (torch.zeros(num_layers, 1, hidden_size), torch.zeros(num_layers, 1, hidden_size))
91
- epoch_loss = 0
92
- for i in range(len(dataX)):
93
- inputs = X_tensor[i].unsqueeze(0) # Shape: (1, seq_length, 1)
94
- targets = Y_tensor[i].unsqueeze(0) # Shape: (1,)
95
-
96
- # Forward pass
97
- outputs, h = model(inputs, (h[0].detach(), h[1].detach()))
98
- loss = criterion(outputs, targets)
99
-
100
- # Backward pass and optimization
101
- optimizer.zero_grad()
102
- loss.backward()
103
- optimizer.step()
104
-
105
- epoch_loss += loss.item()
106
-
107
- avg_loss = epoch_loss / len(dataX)
108
- st.write(f'Epoch [{epoch + 1}/{num_epochs}], Loss: {avg_loss:.4f}')
109
-
110
- # Text generation
111
- generated_text = generate_text(model, start_string, generate_length, char_to_int, int_to_char, num_layers, hidden_size)
112
- st.subheader("Generated Text")
113
- st.write(generated_text)