Spaces:
Running
Running
Create 17_RNN_News.py
Browse files- pages/17_RNN_News.py +168 -0
pages/17_RNN_News.py
ADDED
@@ -0,0 +1,168 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import torch
|
3 |
+
import torch.nn as nn
|
4 |
+
import torch.optim as optim
|
5 |
+
from torchtext.legacy import data, datasets
|
6 |
+
import matplotlib.pyplot as plt
|
7 |
+
import pandas as pd
|
8 |
+
import numpy as np
|
9 |
+
|
10 |
+
# Define the RNN model
|
11 |
+
class RNN(nn.Module):
|
12 |
+
def __init__(self, vocab_size, embed_size, hidden_size, output_size, n_layers, dropout):
|
13 |
+
super(RNN, self).__init__()
|
14 |
+
self.embedding = nn.Embedding(vocab_size, embed_size)
|
15 |
+
self.rnn = nn.RNN(embed_size, hidden_size, n_layers, dropout=dropout, batch_first=True)
|
16 |
+
self.fc = nn.Linear(hidden_size, output_size)
|
17 |
+
self.dropout = nn.Dropout(dropout)
|
18 |
+
|
19 |
+
def forward(self, x):
|
20 |
+
x = self.dropout(self.embedding(x))
|
21 |
+
h0 = torch.zeros(n_layers, x.size(0), hidden_size).to(device)
|
22 |
+
out, _ = self.rnn(x, h0)
|
23 |
+
out = self.fc(out[:, -1, :])
|
24 |
+
return out
|
25 |
+
|
26 |
+
# Load the data
|
27 |
+
@st.cache(allow_output_mutation=True)
|
28 |
+
def load_data():
|
29 |
+
TEXT = data.Field(tokenize='spacy', tokenizer_language='en_core_web_sm', include_lengths=True)
|
30 |
+
LABEL = data.LabelField(dtype=torch.long)
|
31 |
+
train_data, test_data = datasets.AG_NEWS.splits(TEXT, LABEL)
|
32 |
+
train_data, valid_data = train_data.split(split_ratio=0.8)
|
33 |
+
|
34 |
+
TEXT.build_vocab(train_data, max_size=25000, vectors="glove.6B.100d", unk_init=torch.Tensor.normal_)
|
35 |
+
LABEL.build_vocab(train_data)
|
36 |
+
|
37 |
+
BATCH_SIZE = 64
|
38 |
+
|
39 |
+
train_iterator, valid_iterator, test_iterator = data.BucketIterator.splits(
|
40 |
+
(train_data, valid_data, test_data),
|
41 |
+
batch_size=BATCH_SIZE,
|
42 |
+
sort_within_batch=True,
|
43 |
+
device=device)
|
44 |
+
|
45 |
+
return TEXT, LABEL, train_iterator, valid_iterator, test_iterator
|
46 |
+
|
47 |
+
# Train the network
|
48 |
+
def train_network(net, iterator, optimizer, criterion, epochs):
|
49 |
+
loss_values = []
|
50 |
+
for epoch in range(epochs):
|
51 |
+
epoch_loss = 0
|
52 |
+
net.train()
|
53 |
+
for batch in iterator:
|
54 |
+
optimizer.zero_grad()
|
55 |
+
text, text_lengths = batch.text
|
56 |
+
predictions = net(text).squeeze(1)
|
57 |
+
loss = criterion(predictions, batch.label)
|
58 |
+
loss.backward()
|
59 |
+
optimizer.step()
|
60 |
+
epoch_loss += loss.item()
|
61 |
+
epoch_loss /= len(iterator)
|
62 |
+
loss_values.append(epoch_loss)
|
63 |
+
st.write(f'Epoch {epoch + 1}: loss {epoch_loss:.3f}')
|
64 |
+
st.write('Finished Training')
|
65 |
+
return loss_values
|
66 |
+
|
67 |
+
# Evaluate the network
|
68 |
+
def evaluate_network(net, iterator, criterion):
|
69 |
+
epoch_loss = 0
|
70 |
+
correct = 0
|
71 |
+
total = 0
|
72 |
+
all_labels = []
|
73 |
+
all_predictions = []
|
74 |
+
net.eval()
|
75 |
+
with torch.no_grad():
|
76 |
+
for batch in iterator:
|
77 |
+
text, text_lengths = batch.text
|
78 |
+
predictions = net(text).squeeze(1)
|
79 |
+
loss = criterion(predictions, batch.label)
|
80 |
+
epoch_loss += loss.item()
|
81 |
+
_, predicted = torch.max(predictions, 1)
|
82 |
+
correct += (predicted == batch.label).sum().item()
|
83 |
+
total += len(batch.label)
|
84 |
+
all_labels.extend(batch.label.cpu().numpy())
|
85 |
+
all_predictions.extend(predicted.cpu().numpy())
|
86 |
+
accuracy = 100 * correct / total
|
87 |
+
st.write(f'Loss: {epoch_loss / len(iterator):.4f}, Accuracy: {accuracy:.2f}%')
|
88 |
+
return accuracy, all_labels, all_predictions
|
89 |
+
|
90 |
+
# Load data
|
91 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
92 |
+
TEXT, LABEL, train_iterator, valid_iterator, test_iterator = load_data()
|
93 |
+
|
94 |
+
# Streamlit interface
|
95 |
+
st.title("RNN for Text Classification on AG News Dataset")
|
96 |
+
|
97 |
+
st.write("""
|
98 |
+
This application demonstrates how to build and train a Recurrent Neural Network (RNN) for text classification using the AG News dataset. You can adjust hyperparameters, visualize sample data, and see the model's performance.
|
99 |
+
""")
|
100 |
+
|
101 |
+
# Sidebar for input parameters
|
102 |
+
st.sidebar.header('Model Hyperparameters')
|
103 |
+
embed_size = st.sidebar.slider('Embedding Size', 50, 300, 100)
|
104 |
+
hidden_size = st.sidebar.slider('Hidden Size', 50, 300, 256)
|
105 |
+
n_layers = st.sidebar.slider('Number of RNN Layers', 1, 3, 2)
|
106 |
+
dropout = st.sidebar.slider('Dropout', 0.0, 0.5, 0.2, step=0.1)
|
107 |
+
learning_rate = st.sidebar.slider('Learning Rate', 0.001, 0.1, 0.01, step=0.001)
|
108 |
+
epochs = st.sidebar.slider('Epochs', 1, 20, 5)
|
109 |
+
|
110 |
+
# Create the network
|
111 |
+
vocab_size = len(TEXT.vocab)
|
112 |
+
output_size = len(LABEL.vocab)
|
113 |
+
net = RNN(vocab_size, embed_size, hidden_size, output_size, n_layers, dropout).to(device)
|
114 |
+
criterion = nn.CrossEntropyLoss()
|
115 |
+
optimizer = optim.Adam(net.parameters(), lr=learning_rate)
|
116 |
+
|
117 |
+
# Add vertical space
|
118 |
+
st.write('\n' * 10)
|
119 |
+
|
120 |
+
# Train the network
|
121 |
+
if st.sidebar.button('Train Network'):
|
122 |
+
loss_values = train_network(net, train_iterator, optimizer, criterion, epochs)
|
123 |
+
|
124 |
+
# Plot the loss values
|
125 |
+
plt.figure(figsize=(10, 5))
|
126 |
+
plt.plot(range(1, epochs + 1), loss_values, marker='o')
|
127 |
+
plt.title('Training Loss Over Epochs')
|
128 |
+
plt.xlabel('Epoch')
|
129 |
+
plt.ylabel('Loss')
|
130 |
+
plt.grid(True)
|
131 |
+
st.pyplot(plt)
|
132 |
+
|
133 |
+
# Store the trained model in the session state
|
134 |
+
st.session_state['trained_model'] = net
|
135 |
+
|
136 |
+
# Test the network
|
137 |
+
if 'trained_model' in st.session_state and st.sidebar.button('Test Network'):
|
138 |
+
accuracy, all_labels, all_predictions = evaluate_network(st.session_state['trained_model'], test_iterator, criterion)
|
139 |
+
st.write(f'Test Accuracy: {accuracy:.2f}%')
|
140 |
+
|
141 |
+
# Display results in a table
|
142 |
+
st.write('Ground Truth vs Predicted')
|
143 |
+
results = pd.DataFrame({
|
144 |
+
'Ground Truth': [LABEL.vocab.itos[label] for label in all_labels],
|
145 |
+
'Predicted': [LABEL.vocab.itos[label] for label in all_predictions]
|
146 |
+
})
|
147 |
+
st.table(results.head(50)) # Display first 50 results for brevity
|
148 |
+
|
149 |
+
# Visualize some test results
|
150 |
+
def visualize_text_predictions(iterator, net):
|
151 |
+
net.eval()
|
152 |
+
samples = []
|
153 |
+
with torch.no_grad():
|
154 |
+
for batch in iterator:
|
155 |
+
text, text_lengths = batch.text
|
156 |
+
predictions = torch.max(net(text), 1)[1]
|
157 |
+
samples.extend(zip(text.cpu(), batch.label.cpu(), predictions.cpu()))
|
158 |
+
if len(samples) >= 10:
|
159 |
+
break
|
160 |
+
return samples[:10]
|
161 |
+
|
162 |
+
if 'trained_model' in st.session_state and st.sidebar.button('Show Test Results'):
|
163 |
+
samples = visualize_text_predictions(test_iterator, st.session_state['trained_model'])
|
164 |
+
st.write('Ground Truth vs Predicted for Sample Texts')
|
165 |
+
for i, (text, true_label, predicted) in enumerate(samples):
|
166 |
+
st.write(f'Sample {i+1}')
|
167 |
+
st.text(' '.join([TEXT.vocab.itos[token] for token in text]))
|
168 |
+
st.write(f'Ground Truth: {LABEL.vocab.itos[true_label.item()]}, Predicted: {LABEL.vocab.itos[predicted.item()]}')
|