Spaces:
Running
Running
Delete pages/26_GANS.py
Browse files- pages/26_GANS.py +0 -113
pages/26_GANS.py
DELETED
@@ -1,113 +0,0 @@
|
|
1 |
-
import streamlit as st
|
2 |
-
import torch
|
3 |
-
import torch.nn as nn
|
4 |
-
import torch.optim as optim
|
5 |
-
import torchvision
|
6 |
-
import torchvision.transforms as transforms
|
7 |
-
from torchvision.utils import make_grid
|
8 |
-
import matplotlib.pyplot as plt
|
9 |
-
|
10 |
-
# Set device
|
11 |
-
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
12 |
-
|
13 |
-
# Hyperparameters
|
14 |
-
z_dim = 64
|
15 |
-
image_dim = 28 * 28
|
16 |
-
batch_size = 32
|
17 |
-
lr = 3e-4
|
18 |
-
|
19 |
-
# Load Data
|
20 |
-
transform = transforms.Compose([
|
21 |
-
transforms.ToTensor(),
|
22 |
-
transforms.Normalize((0.5,), (0.5,))
|
23 |
-
])
|
24 |
-
|
25 |
-
dataset = torchvision.datasets.MNIST(root='dataset/', transform=transform, download=True)
|
26 |
-
dataloader = torch.utils.data.DataLoader(dataset, batch_size=batch_size, shuffle=True)
|
27 |
-
|
28 |
-
# Generator
|
29 |
-
class Generator(nn.Module):
|
30 |
-
def __init__(self, z_dim, img_dim):
|
31 |
-
super().__init__()
|
32 |
-
self.gen = nn.Sequential(
|
33 |
-
nn.Linear(z_dim, 256),
|
34 |
-
nn.ReLU(),
|
35 |
-
nn.Linear(256, 512),
|
36 |
-
nn.ReLU(),
|
37 |
-
nn.Linear(512, 1024),
|
38 |
-
nn.ReLU(),
|
39 |
-
nn.Linear(1024, img_dim),
|
40 |
-
nn.Tanh()
|
41 |
-
)
|
42 |
-
|
43 |
-
def forward(self, x):
|
44 |
-
return self.gen(x)
|
45 |
-
|
46 |
-
# Discriminator
|
47 |
-
class Discriminator(nn.Module):
|
48 |
-
def __init__(self, img_dim):
|
49 |
-
super().__init__()
|
50 |
-
self.disc = nn.Sequential(
|
51 |
-
nn.Linear(img_dim, 1024),
|
52 |
-
nn.ReLU(),
|
53 |
-
nn.Linear(1024, 512),
|
54 |
-
nn.ReLU(),
|
55 |
-
nn.Linear(512, 256),
|
56 |
-
nn.ReLU(),
|
57 |
-
nn.Linear(256, 1),
|
58 |
-
nn.Sigmoid(),
|
59 |
-
)
|
60 |
-
|
61 |
-
def forward(self, x):
|
62 |
-
return self.disc(x)
|
63 |
-
|
64 |
-
# Initialize generator and discriminator
|
65 |
-
gen = Generator(z_dim, image_dim).to(device)
|
66 |
-
disc = Discriminator(image_dim).to(device)
|
67 |
-
|
68 |
-
# Optimizers
|
69 |
-
opt_gen = optim.Adam(gen.parameters(), lr=lr)
|
70 |
-
opt_disc = optim.Adam(disc.parameters(), lr=lr)
|
71 |
-
|
72 |
-
# Loss function
|
73 |
-
criterion = nn.BCELoss()
|
74 |
-
|
75 |
-
# Function to train the model
|
76 |
-
def train_gan(epochs):
|
77 |
-
for epoch in range(epochs):
|
78 |
-
for batch_idx, (real, _) in enumerate(dataloader):
|
79 |
-
real = real.view(-1, 784).to(device)
|
80 |
-
batch_size = real.shape[0]
|
81 |
-
|
82 |
-
# Train Discriminator
|
83 |
-
noise = torch.randn(batch_size, z_dim).to(device)
|
84 |
-
fake = gen(noise)
|
85 |
-
disc_real = disc(real).view(-1)
|
86 |
-
lossD_real = criterion(disc_real, torch.ones_like(disc_real))
|
87 |
-
disc_fake = disc(fake).view(-1)
|
88 |
-
lossD_fake = criterion(disc_fake, torch.zeros_like(disc_fake))
|
89 |
-
lossD = (lossD_real + lossD_fake) / 2
|
90 |
-
disc.zero_grad()
|
91 |
-
lossD.backward(retain_graph=True)
|
92 |
-
opt_disc.step()
|
93 |
-
|
94 |
-
# Train Generator
|
95 |
-
output = disc(fake).view(-1)
|
96 |
-
lossG = criterion(output, torch.ones_like(output))
|
97 |
-
gen.zero_grad()
|
98 |
-
lossG.backward()
|
99 |
-
opt_gen.step()
|
100 |
-
|
101 |
-
st.write(f"Epoch [{epoch+1}/{epochs}] Loss D: {lossD:.4f}, Loss G: {lossG:.4f}")
|
102 |
-
|
103 |
-
return fake
|
104 |
-
|
105 |
-
# Streamlit interface
|
106 |
-
st.title("Simple GAN with Epoch Slider")
|
107 |
-
epochs = st.slider("Number of Epochs", 1, 100, 1)
|
108 |
-
if st.button("Train GAN"):
|
109 |
-
fake_images = train_gan(epochs)
|
110 |
-
fake_images = fake_images.view(-1, 1, 28, 28)
|
111 |
-
fake_images = make_grid(fake_images, nrow=8, normalize=True)
|
112 |
-
plt.imshow(fake_images.permute(1, 2, 0).cpu().detach().numpy(), cmap='gray')
|
113 |
-
st.pyplot(plt.gcf())
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|