eaglelandsonce commited on
Commit
bb143ac
·
verified ·
1 Parent(s): ec2b0f4

Delete pages/26_GANS.py

Browse files
Files changed (1) hide show
  1. pages/26_GANS.py +0 -113
pages/26_GANS.py DELETED
@@ -1,113 +0,0 @@
1
- import streamlit as st
2
- import torch
3
- import torch.nn as nn
4
- import torch.optim as optim
5
- import torchvision
6
- import torchvision.transforms as transforms
7
- from torchvision.utils import make_grid
8
- import matplotlib.pyplot as plt
9
-
10
- # Set device
11
- device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
12
-
13
- # Hyperparameters
14
- z_dim = 64
15
- image_dim = 28 * 28
16
- batch_size = 32
17
- lr = 3e-4
18
-
19
- # Load Data
20
- transform = transforms.Compose([
21
- transforms.ToTensor(),
22
- transforms.Normalize((0.5,), (0.5,))
23
- ])
24
-
25
- dataset = torchvision.datasets.MNIST(root='dataset/', transform=transform, download=True)
26
- dataloader = torch.utils.data.DataLoader(dataset, batch_size=batch_size, shuffle=True)
27
-
28
- # Generator
29
- class Generator(nn.Module):
30
- def __init__(self, z_dim, img_dim):
31
- super().__init__()
32
- self.gen = nn.Sequential(
33
- nn.Linear(z_dim, 256),
34
- nn.ReLU(),
35
- nn.Linear(256, 512),
36
- nn.ReLU(),
37
- nn.Linear(512, 1024),
38
- nn.ReLU(),
39
- nn.Linear(1024, img_dim),
40
- nn.Tanh()
41
- )
42
-
43
- def forward(self, x):
44
- return self.gen(x)
45
-
46
- # Discriminator
47
- class Discriminator(nn.Module):
48
- def __init__(self, img_dim):
49
- super().__init__()
50
- self.disc = nn.Sequential(
51
- nn.Linear(img_dim, 1024),
52
- nn.ReLU(),
53
- nn.Linear(1024, 512),
54
- nn.ReLU(),
55
- nn.Linear(512, 256),
56
- nn.ReLU(),
57
- nn.Linear(256, 1),
58
- nn.Sigmoid(),
59
- )
60
-
61
- def forward(self, x):
62
- return self.disc(x)
63
-
64
- # Initialize generator and discriminator
65
- gen = Generator(z_dim, image_dim).to(device)
66
- disc = Discriminator(image_dim).to(device)
67
-
68
- # Optimizers
69
- opt_gen = optim.Adam(gen.parameters(), lr=lr)
70
- opt_disc = optim.Adam(disc.parameters(), lr=lr)
71
-
72
- # Loss function
73
- criterion = nn.BCELoss()
74
-
75
- # Function to train the model
76
- def train_gan(epochs):
77
- for epoch in range(epochs):
78
- for batch_idx, (real, _) in enumerate(dataloader):
79
- real = real.view(-1, 784).to(device)
80
- batch_size = real.shape[0]
81
-
82
- # Train Discriminator
83
- noise = torch.randn(batch_size, z_dim).to(device)
84
- fake = gen(noise)
85
- disc_real = disc(real).view(-1)
86
- lossD_real = criterion(disc_real, torch.ones_like(disc_real))
87
- disc_fake = disc(fake).view(-1)
88
- lossD_fake = criterion(disc_fake, torch.zeros_like(disc_fake))
89
- lossD = (lossD_real + lossD_fake) / 2
90
- disc.zero_grad()
91
- lossD.backward(retain_graph=True)
92
- opt_disc.step()
93
-
94
- # Train Generator
95
- output = disc(fake).view(-1)
96
- lossG = criterion(output, torch.ones_like(output))
97
- gen.zero_grad()
98
- lossG.backward()
99
- opt_gen.step()
100
-
101
- st.write(f"Epoch [{epoch+1}/{epochs}] Loss D: {lossD:.4f}, Loss G: {lossG:.4f}")
102
-
103
- return fake
104
-
105
- # Streamlit interface
106
- st.title("Simple GAN with Epoch Slider")
107
- epochs = st.slider("Number of Epochs", 1, 100, 1)
108
- if st.button("Train GAN"):
109
- fake_images = train_gan(epochs)
110
- fake_images = fake_images.view(-1, 1, 28, 28)
111
- fake_images = make_grid(fake_images, nrow=8, normalize=True)
112
- plt.imshow(fake_images.permute(1, 2, 0).cpu().detach().numpy(), cmap='gray')
113
- st.pyplot(plt.gcf())