Spaces:
Running
Running
Delete pages/15_Simple_CNN.py
Browse files- pages/15_Simple_CNN.py +0 -111
pages/15_Simple_CNN.py
DELETED
|
@@ -1,111 +0,0 @@
|
|
| 1 |
-
import streamlit as st
|
| 2 |
-
import torch
|
| 3 |
-
import torch.nn as nn
|
| 4 |
-
import torch.optim as optim
|
| 5 |
-
import torchvision
|
| 6 |
-
import torchvision.transforms as transforms
|
| 7 |
-
import matplotlib.pyplot as plt
|
| 8 |
-
import numpy as np
|
| 9 |
-
|
| 10 |
-
# Define the CNN
|
| 11 |
-
class SimpleCNN(nn.Module):
|
| 12 |
-
def __init__(self):
|
| 13 |
-
super(SimpleCNN, self).__init__()
|
| 14 |
-
self.conv1 = nn.Conv2d(3, 16, 3, padding=1)
|
| 15 |
-
self.conv2 = nn.Conv2d(16, 32, 3, padding=1)
|
| 16 |
-
self.pool = nn.MaxPool2d(2, 2)
|
| 17 |
-
self.fc1 = nn.Linear(32 * 8 * 8, 128)
|
| 18 |
-
self.fc2 = nn.Linear(128, 10)
|
| 19 |
-
|
| 20 |
-
def forward(self, x):
|
| 21 |
-
x = self.pool(torch.relu(self.conv1(x)))
|
| 22 |
-
x = self.pool(torch.relu(self.conv2(x)))
|
| 23 |
-
x = x.view(-1, 32 * 8 * 8)
|
| 24 |
-
x = torch.relu(self.fc1(x))
|
| 25 |
-
x = self.fc2(x)
|
| 26 |
-
return x
|
| 27 |
-
|
| 28 |
-
# Function to train the model
|
| 29 |
-
def train_model(num_epochs):
|
| 30 |
-
transform = transforms.Compose([
|
| 31 |
-
transforms.ToTensor(),
|
| 32 |
-
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
|
| 33 |
-
])
|
| 34 |
-
|
| 35 |
-
trainset = torchvision.datasets.CIFAR10(root='./data', train=True, download=True, transform=transform)
|
| 36 |
-
trainloader = torch.utils.data.DataLoader(trainset, batch_size=64, shuffle=True)
|
| 37 |
-
|
| 38 |
-
testset = torchvision.datasets.CIFAR10(root='./data', train=False, download=True, transform=transform)
|
| 39 |
-
testloader = torch.utils.data.DataLoader(testset, batch_size=64, shuffle=False)
|
| 40 |
-
|
| 41 |
-
CIFAR10_CLASSES = [
|
| 42 |
-
'plane', 'car', 'bird', 'cat', 'deer',
|
| 43 |
-
'dog', 'frog', 'horse', 'ship', 'truck'
|
| 44 |
-
]
|
| 45 |
-
|
| 46 |
-
net = SimpleCNN()
|
| 47 |
-
criterion = nn.CrossEntropyLoss()
|
| 48 |
-
optimizer = optim.SGD(net.parameters(), lr=0.01, momentum=0.9)
|
| 49 |
-
|
| 50 |
-
loss_values = []
|
| 51 |
-
st.write("Training the model...")
|
| 52 |
-
|
| 53 |
-
for epoch in range(num_epochs):
|
| 54 |
-
running_loss = 0.0
|
| 55 |
-
for i, data in enumerate(trainloader, 0):
|
| 56 |
-
inputs, labels = data
|
| 57 |
-
optimizer.zero_grad()
|
| 58 |
-
outputs = net(inputs)
|
| 59 |
-
loss = criterion(outputs, labels)
|
| 60 |
-
loss.backward()
|
| 61 |
-
optimizer.step()
|
| 62 |
-
running_loss += loss.item()
|
| 63 |
-
loss_values.append(running_loss / len(trainloader))
|
| 64 |
-
st.write(f'Epoch {epoch + 1}, Loss: {running_loss / len(trainloader):.3f}')
|
| 65 |
-
st.write('Finished Training')
|
| 66 |
-
|
| 67 |
-
# Plot the loss values
|
| 68 |
-
plt.figure(figsize=(10, 5))
|
| 69 |
-
plt.plot(range(1, num_epochs + 1), loss_values, marker='o')
|
| 70 |
-
plt.title('Training Loss over Epochs')
|
| 71 |
-
plt.xlabel('Epoch')
|
| 72 |
-
plt.ylabel('Loss')
|
| 73 |
-
st.pyplot(plt)
|
| 74 |
-
|
| 75 |
-
correct = 0
|
| 76 |
-
total = 0
|
| 77 |
-
with torch.no_grad():
|
| 78 |
-
for data in testloader:
|
| 79 |
-
images, labels = data
|
| 80 |
-
outputs = net(images)
|
| 81 |
-
_, predicted = torch.max(outputs, 1)
|
| 82 |
-
total += labels.size(0)
|
| 83 |
-
correct += (predicted == labels).sum().item()
|
| 84 |
-
|
| 85 |
-
st.write(f'Accuracy of the network on the 10000 test images: {100 * correct / total}%')
|
| 86 |
-
|
| 87 |
-
# Visualize some test images and their predictions
|
| 88 |
-
def imshow(img):
|
| 89 |
-
img = img / 2 + 0.5 # Unnormalize
|
| 90 |
-
npimg = img.numpy()
|
| 91 |
-
plt.imshow(np.transpose(npimg, (1, 2, 0)))
|
| 92 |
-
plt.show()
|
| 93 |
-
|
| 94 |
-
dataiter = iter(testloader)
|
| 95 |
-
images, labels = next(dataiter)
|
| 96 |
-
|
| 97 |
-
imshow(torchvision.utils.make_grid(images))
|
| 98 |
-
|
| 99 |
-
outputs = net(images)
|
| 100 |
-
_, predicted = torch.max(outputs, 1)
|
| 101 |
-
|
| 102 |
-
st.write('Predicted: ', ' '.join(f'{CIFAR10_CLASSES[predicted[j]]:5s}' for j in range(8)))
|
| 103 |
-
st.write('Actual: ', ' '.join(f'{CIFAR10_CLASSES[labels[j]]:5s}' for j in range(8)))
|
| 104 |
-
st.pyplot()
|
| 105 |
-
|
| 106 |
-
# Streamlit interface
|
| 107 |
-
st.title('CIFAR-10 Classification with PyTorch')
|
| 108 |
-
num_epochs = st.number_input('Enter number of epochs:', min_value=1, max_value=100, value=10)
|
| 109 |
-
if st.button('Run'):
|
| 110 |
-
train_model(num_epochs)
|
| 111 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|