Spaces:
Running
Running
Delete pages/15_Simple_CNN.py
Browse files- pages/15_Simple_CNN.py +0 -111
pages/15_Simple_CNN.py
DELETED
@@ -1,111 +0,0 @@
|
|
1 |
-
import streamlit as st
|
2 |
-
import torch
|
3 |
-
import torch.nn as nn
|
4 |
-
import torch.optim as optim
|
5 |
-
import torchvision
|
6 |
-
import torchvision.transforms as transforms
|
7 |
-
import matplotlib.pyplot as plt
|
8 |
-
import numpy as np
|
9 |
-
|
10 |
-
# Define the CNN
|
11 |
-
class SimpleCNN(nn.Module):
|
12 |
-
def __init__(self):
|
13 |
-
super(SimpleCNN, self).__init__()
|
14 |
-
self.conv1 = nn.Conv2d(3, 16, 3, padding=1)
|
15 |
-
self.conv2 = nn.Conv2d(16, 32, 3, padding=1)
|
16 |
-
self.pool = nn.MaxPool2d(2, 2)
|
17 |
-
self.fc1 = nn.Linear(32 * 8 * 8, 128)
|
18 |
-
self.fc2 = nn.Linear(128, 10)
|
19 |
-
|
20 |
-
def forward(self, x):
|
21 |
-
x = self.pool(torch.relu(self.conv1(x)))
|
22 |
-
x = self.pool(torch.relu(self.conv2(x)))
|
23 |
-
x = x.view(-1, 32 * 8 * 8)
|
24 |
-
x = torch.relu(self.fc1(x))
|
25 |
-
x = self.fc2(x)
|
26 |
-
return x
|
27 |
-
|
28 |
-
# Function to train the model
|
29 |
-
def train_model(num_epochs):
|
30 |
-
transform = transforms.Compose([
|
31 |
-
transforms.ToTensor(),
|
32 |
-
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
|
33 |
-
])
|
34 |
-
|
35 |
-
trainset = torchvision.datasets.CIFAR10(root='./data', train=True, download=True, transform=transform)
|
36 |
-
trainloader = torch.utils.data.DataLoader(trainset, batch_size=64, shuffle=True)
|
37 |
-
|
38 |
-
testset = torchvision.datasets.CIFAR10(root='./data', train=False, download=True, transform=transform)
|
39 |
-
testloader = torch.utils.data.DataLoader(testset, batch_size=64, shuffle=False)
|
40 |
-
|
41 |
-
CIFAR10_CLASSES = [
|
42 |
-
'plane', 'car', 'bird', 'cat', 'deer',
|
43 |
-
'dog', 'frog', 'horse', 'ship', 'truck'
|
44 |
-
]
|
45 |
-
|
46 |
-
net = SimpleCNN()
|
47 |
-
criterion = nn.CrossEntropyLoss()
|
48 |
-
optimizer = optim.SGD(net.parameters(), lr=0.01, momentum=0.9)
|
49 |
-
|
50 |
-
loss_values = []
|
51 |
-
st.write("Training the model...")
|
52 |
-
|
53 |
-
for epoch in range(num_epochs):
|
54 |
-
running_loss = 0.0
|
55 |
-
for i, data in enumerate(trainloader, 0):
|
56 |
-
inputs, labels = data
|
57 |
-
optimizer.zero_grad()
|
58 |
-
outputs = net(inputs)
|
59 |
-
loss = criterion(outputs, labels)
|
60 |
-
loss.backward()
|
61 |
-
optimizer.step()
|
62 |
-
running_loss += loss.item()
|
63 |
-
loss_values.append(running_loss / len(trainloader))
|
64 |
-
st.write(f'Epoch {epoch + 1}, Loss: {running_loss / len(trainloader):.3f}')
|
65 |
-
st.write('Finished Training')
|
66 |
-
|
67 |
-
# Plot the loss values
|
68 |
-
plt.figure(figsize=(10, 5))
|
69 |
-
plt.plot(range(1, num_epochs + 1), loss_values, marker='o')
|
70 |
-
plt.title('Training Loss over Epochs')
|
71 |
-
plt.xlabel('Epoch')
|
72 |
-
plt.ylabel('Loss')
|
73 |
-
st.pyplot(plt)
|
74 |
-
|
75 |
-
correct = 0
|
76 |
-
total = 0
|
77 |
-
with torch.no_grad():
|
78 |
-
for data in testloader:
|
79 |
-
images, labels = data
|
80 |
-
outputs = net(images)
|
81 |
-
_, predicted = torch.max(outputs, 1)
|
82 |
-
total += labels.size(0)
|
83 |
-
correct += (predicted == labels).sum().item()
|
84 |
-
|
85 |
-
st.write(f'Accuracy of the network on the 10000 test images: {100 * correct / total}%')
|
86 |
-
|
87 |
-
# Visualize some test images and their predictions
|
88 |
-
def imshow(img):
|
89 |
-
img = img / 2 + 0.5 # Unnormalize
|
90 |
-
npimg = img.numpy()
|
91 |
-
plt.imshow(np.transpose(npimg, (1, 2, 0)))
|
92 |
-
plt.show()
|
93 |
-
|
94 |
-
dataiter = iter(testloader)
|
95 |
-
images, labels = next(dataiter)
|
96 |
-
|
97 |
-
imshow(torchvision.utils.make_grid(images))
|
98 |
-
|
99 |
-
outputs = net(images)
|
100 |
-
_, predicted = torch.max(outputs, 1)
|
101 |
-
|
102 |
-
st.write('Predicted: ', ' '.join(f'{CIFAR10_CLASSES[predicted[j]]:5s}' for j in range(8)))
|
103 |
-
st.write('Actual: ', ' '.join(f'{CIFAR10_CLASSES[labels[j]]:5s}' for j in range(8)))
|
104 |
-
st.pyplot()
|
105 |
-
|
106 |
-
# Streamlit interface
|
107 |
-
st.title('CIFAR-10 Classification with PyTorch')
|
108 |
-
num_epochs = st.number_input('Enter number of epochs:', min_value=1, max_value=100, value=10)
|
109 |
-
if st.button('Run'):
|
110 |
-
train_model(num_epochs)
|
111 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|