eaglelandsonce commited on
Commit
be853dd
·
verified ·
1 Parent(s): a585aa1

Create 1_MNIST_With_Images.py

Browse files
Files changed (1) hide show
  1. 1_MNIST_With_Images.py +108 -0
1_MNIST_With_Images.py ADDED
@@ -0,0 +1,108 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ import torch
3
+ import torch.nn as nn
4
+ import torch.optim as optim
5
+ import torchvision
6
+ import torchvision.transforms as transforms
7
+ import matplotlib.pyplot as plt
8
+
9
+ # Define the neural network
10
+ class Net(nn.Module):
11
+ def __init__(self):
12
+ super(Net, self).__init__()
13
+ self.fc1 = nn.Linear(28 * 28, 128)
14
+ self.fc2 = nn.Linear(128, 64)
15
+ self.fc3 = nn.Linear(64, 10)
16
+
17
+ def forward(self, x):
18
+ x = x.view(-1, 28 * 28)
19
+ x = torch.relu(self.fc1(x))
20
+ x = torch.relu(self.fc2(x))
21
+ x = self.fc3(x)
22
+ return x
23
+
24
+ # Function to train the model
25
+ def train_model(num_epochs):
26
+ # Define transformations
27
+ transform = transforms.Compose([
28
+ transforms.ToTensor(),
29
+ transforms.Normalize((0.5,), (0.5,))
30
+ ])
31
+
32
+ # Load datasets
33
+ trainset = torchvision.datasets.MNIST(root='./data', train=True, download=True, transform=transform)
34
+ trainloader = torch.utils.data.DataLoader(trainset, batch_size=64, shuffle=True)
35
+
36
+ testset = torchvision.datasets.MNIST(root='./data', train=False, download=True, transform=transform)
37
+ testloader = torch.utils.data.DataLoader(testset, batch_size=64, shuffle=False)
38
+
39
+ # Display sample images
40
+ display_sample_images(trainloader)
41
+
42
+ # Initialize the network, loss function, and optimizer
43
+ net = Net()
44
+ criterion = nn.CrossEntropyLoss()
45
+ optimizer = optim.SGD(net.parameters(), lr=0.01, momentum=0.9)
46
+
47
+ # Track loss over epochs
48
+ loss_values = []
49
+
50
+ # Training loop
51
+ for epoch in range(num_epochs):
52
+ running_loss = 0.0
53
+ for i, data in enumerate(trainloader, 0):
54
+ inputs, labels = data
55
+ optimizer.zero_grad()
56
+ outputs = net(inputs)
57
+ loss = criterion(outputs, labels)
58
+ loss.backward()
59
+ optimizer.step()
60
+ running_loss += loss.item()
61
+
62
+ # Append average loss for this epoch
63
+ loss_values.append(running_loss / len(trainloader))
64
+ st.write(f'Epoch {epoch + 1}, Loss: {running_loss / len(trainloader):.3f}')
65
+
66
+ st.write('Finished Training')
67
+
68
+ # Plot the loss values
69
+ plt.figure(figsize=(10, 5))
70
+ plt.plot(range(1, num_epochs + 1), loss_values, marker='o')
71
+ plt.title('Training Loss over Epochs')
72
+ plt.xlabel('Epoch')
73
+ plt.ylabel('Loss')
74
+ st.pyplot(plt)
75
+
76
+ # Evaluate the network on the test data
77
+ correct = 0
78
+ total = 0
79
+ with torch.no_grad():
80
+ for data in testloader:
81
+ images, labels = data
82
+ outputs = net(images)
83
+ _, predicted = torch.max(outputs.data, 1)
84
+ total += labels.size(0)
85
+ correct += (predicted == labels).sum().item()
86
+
87
+ st.write(f'Accuracy of the network on the 10000 test images: {100 * correct / total}%')
88
+
89
+ # Function to display sample images
90
+ def display_sample_images(loader):
91
+ dataiter = iter(loader)
92
+ images, labels = dataiter.next()
93
+ images = images[:5]
94
+ labels = labels[:5]
95
+
96
+ fig, axes = plt.subplots(1, 5, figsize=(15, 3))
97
+ for i in range(5):
98
+ ax = axes[i]
99
+ ax.imshow(images[i].numpy().squeeze(), cmap='gray')
100
+ ax.set_title(f'Label: {labels[i].item()}')
101
+ ax.axis('off')
102
+ st.pyplot(fig)
103
+
104
+ # Streamlit interface
105
+ st.title('MNIST Digit Classification with PyTorch')
106
+ num_epochs = st.number_input('Enter number of epochs:', min_value=1, max_value=100, value=10)
107
+ if st.button('Run'):
108
+ train_model(num_epochs)