eaglelandsonce commited on
Commit
ed9be79
·
verified ·
1 Parent(s): de81b4d

Update pages/2_LinearRegression.py

Browse files
Files changed (1) hide show
  1. pages/2_LinearRegression.py +65 -29
pages/2_LinearRegression.py CHANGED
@@ -3,47 +3,83 @@ import numpy as np
3
  import matplotlib.pyplot as plt
4
  import torch
5
  import torch.nn as nn
 
6
 
7
- # Set a seed for reproducibility
8
- torch.manual_seed(59)
 
 
 
 
 
 
9
 
10
- # Define the Linear Model
11
- class LinearModel(nn.Module):
12
- def __init__(self, in_features, out_features):
13
- super(LinearModel, self).__init__()
14
- self.linear = nn.Linear(in_features, out_features)
 
 
 
 
 
 
 
 
 
15
 
16
  def forward(self, x):
17
  return self.linear(x)
18
 
19
- # Instantiate the model
20
- model = LinearModel(1, 1)
21
 
22
- # Print model weight and bias
23
- print(f'Model weight: {model.linear.weight.item()}')
24
- print(f'Model bias: {model.linear.bias.item()}')
25
 
26
- # Streamlit app title
27
- st.title('Interactive Scatter Plot with Noise and Number of Data Points')
 
 
 
 
 
 
 
 
28
 
29
- # Sidebar sliders for noise and number of data points
30
- noise_level = st.sidebar.slider('Noise Level', 0.0, 1.0, 0.1, step=0.01)
31
- num_points = st.sidebar.slider('Number of Data Points', 10, 100, 50, step=5)
32
 
33
- # Generate data
34
- np.random.seed(59)
35
- x = np.linspace(0, 10, num_points).reshape(-1, 1).astype(np.float32)
36
- with torch.no_grad():
37
- x_tensor = torch.tensor(x)
38
- y_tensor = model(x_tensor)
39
- y = y_tensor.numpy().flatten() + noise_level * np.random.randn(num_points)
40
-
41
- # Create scatter plot
42
  fig, ax = plt.subplots()
43
- ax.scatter(x, y, alpha=0.6)
 
44
  ax.set_title('Scatter Plot with Noise and Number of Data Points')
45
  ax.set_xlabel('X-axis')
46
  ax.set_ylabel('Y-axis')
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
47
 
48
- # Display plot in Streamlit
49
- st.pyplot(fig)
 
3
  import matplotlib.pyplot as plt
4
  import torch
5
  import torch.nn as nn
6
+ import torch.optim as optim
7
 
8
+ # Streamlit app title
9
+ st.title('Simple Linear Regression with PyTorch')
10
+
11
+ # Sidebar sliders for noise and number of data points
12
+ noise_level = st.sidebar.slider('Noise Level', 0.0, 1.0, 0.1, step=0.01)
13
+ num_points = st.sidebar.slider('Number of Data Points', 10, 100, 50, step=5)
14
+ num_epochs = st.sidebar.slider('Number of Epochs', 10, 500, 100, step=10)
15
+ learning_rate = st.sidebar.slider('Learning Rate', 0.001, 0.1, 0.01, step=0.001)
16
 
17
+ # Generate data
18
+ np.random.seed(0)
19
+ x = np.linspace(0, 10, num_points)
20
+ y = 2 * x + 1 + noise_level * np.random.randn(num_points)
21
+
22
+ # Convert data to PyTorch tensors
23
+ x_tensor = torch.tensor(x, dtype=torch.float32).view(-1, 1)
24
+ y_tensor = torch.tensor(y, dtype=torch.float32).view(-1, 1)
25
+
26
+ # Define the linear regression model
27
+ class LinearRegressionModel(nn.Module):
28
+ def __init__(self):
29
+ super(LinearRegressionModel, self).__init__()
30
+ self.linear = nn.Linear(1, 1)
31
 
32
  def forward(self, x):
33
  return self.linear(x)
34
 
35
+ model = LinearRegressionModel()
 
36
 
37
+ # Define the loss function and the optimizer
38
+ criterion = nn.MSELoss()
39
+ optimizer = optim.SGD(model.parameters(), lr=learning_rate)
40
 
41
+ # Train the model
42
+ losses = []
43
+ for epoch in range(num_epochs):
44
+ model.train()
45
+ optimizer.zero_grad()
46
+ outputs = model(x_tensor)
47
+ loss = criterion(outputs, y_tensor)
48
+ loss.backward()
49
+ optimizer.step()
50
+ losses.append(loss.item())
51
 
52
+ # Get the final model parameters
53
+ slope = model.linear.weight.item()
54
+ intercept = model.linear.bias.item()
55
 
56
+ # Make predictions
57
+ model.eval()
58
+ y_pred_tensor = model(x_tensor)
59
+ y_pred = y_pred_tensor.detach().numpy()
60
+
61
+ # Create scatter plot with regression line
 
 
 
62
  fig, ax = plt.subplots()
63
+ ax.scatter(x, y, alpha=0.6, label='Data points')
64
+ ax.plot(x, y_pred, color='red', label='Regression line')
65
  ax.set_title('Scatter Plot with Noise and Number of Data Points')
66
  ax.set_xlabel('X-axis')
67
  ax.set_ylabel('Y-axis')
68
+ ax.legend()
69
+
70
+ # Display slope and intercept in Streamlit
71
+ st.write(f"**Slope:** {slope}")
72
+ st.write(f"**Intercept:** {intercept}")
73
+
74
+ # Display scatter plot in Streamlit
75
+ st.pyplot(fig)
76
+
77
+ # Plot training loss
78
+ fig_loss, ax_loss = plt.subplots()
79
+ ax_loss.plot(range(num_epochs), losses)
80
+ ax_loss.set_title('Training Loss')
81
+ ax_loss.set_xlabel('Epoch')
82
+ ax_loss.set_ylabel('Loss')
83
 
84
+ # Display training loss plot in Streamlit
85
+ st.pyplot(fig_loss)