Spaces:
Running
Running
Update pages/2_LinearRegression.py
Browse files- pages/2_LinearRegression.py +65 -29
pages/2_LinearRegression.py
CHANGED
@@ -3,47 +3,83 @@ import numpy as np
|
|
3 |
import matplotlib.pyplot as plt
|
4 |
import torch
|
5 |
import torch.nn as nn
|
|
|
6 |
|
7 |
-
#
|
8 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
-
#
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
|
16 |
def forward(self, x):
|
17 |
return self.linear(x)
|
18 |
|
19 |
-
|
20 |
-
model = LinearModel(1, 1)
|
21 |
|
22 |
-
#
|
23 |
-
|
24 |
-
|
25 |
|
26 |
-
#
|
27 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
|
29 |
-
#
|
30 |
-
|
31 |
-
|
32 |
|
33 |
-
#
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
y = y_tensor.numpy().flatten() + noise_level * np.random.randn(num_points)
|
40 |
-
|
41 |
-
# Create scatter plot
|
42 |
fig, ax = plt.subplots()
|
43 |
-
ax.scatter(x, y, alpha=0.6)
|
|
|
44 |
ax.set_title('Scatter Plot with Noise and Number of Data Points')
|
45 |
ax.set_xlabel('X-axis')
|
46 |
ax.set_ylabel('Y-axis')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
|
48 |
-
# Display plot in Streamlit
|
49 |
-
st.pyplot(
|
|
|
3 |
import matplotlib.pyplot as plt
|
4 |
import torch
|
5 |
import torch.nn as nn
|
6 |
+
import torch.optim as optim
|
7 |
|
8 |
+
# Streamlit app title
|
9 |
+
st.title('Simple Linear Regression with PyTorch')
|
10 |
+
|
11 |
+
# Sidebar sliders for noise and number of data points
|
12 |
+
noise_level = st.sidebar.slider('Noise Level', 0.0, 1.0, 0.1, step=0.01)
|
13 |
+
num_points = st.sidebar.slider('Number of Data Points', 10, 100, 50, step=5)
|
14 |
+
num_epochs = st.sidebar.slider('Number of Epochs', 10, 500, 100, step=10)
|
15 |
+
learning_rate = st.sidebar.slider('Learning Rate', 0.001, 0.1, 0.01, step=0.001)
|
16 |
|
17 |
+
# Generate data
|
18 |
+
np.random.seed(0)
|
19 |
+
x = np.linspace(0, 10, num_points)
|
20 |
+
y = 2 * x + 1 + noise_level * np.random.randn(num_points)
|
21 |
+
|
22 |
+
# Convert data to PyTorch tensors
|
23 |
+
x_tensor = torch.tensor(x, dtype=torch.float32).view(-1, 1)
|
24 |
+
y_tensor = torch.tensor(y, dtype=torch.float32).view(-1, 1)
|
25 |
+
|
26 |
+
# Define the linear regression model
|
27 |
+
class LinearRegressionModel(nn.Module):
|
28 |
+
def __init__(self):
|
29 |
+
super(LinearRegressionModel, self).__init__()
|
30 |
+
self.linear = nn.Linear(1, 1)
|
31 |
|
32 |
def forward(self, x):
|
33 |
return self.linear(x)
|
34 |
|
35 |
+
model = LinearRegressionModel()
|
|
|
36 |
|
37 |
+
# Define the loss function and the optimizer
|
38 |
+
criterion = nn.MSELoss()
|
39 |
+
optimizer = optim.SGD(model.parameters(), lr=learning_rate)
|
40 |
|
41 |
+
# Train the model
|
42 |
+
losses = []
|
43 |
+
for epoch in range(num_epochs):
|
44 |
+
model.train()
|
45 |
+
optimizer.zero_grad()
|
46 |
+
outputs = model(x_tensor)
|
47 |
+
loss = criterion(outputs, y_tensor)
|
48 |
+
loss.backward()
|
49 |
+
optimizer.step()
|
50 |
+
losses.append(loss.item())
|
51 |
|
52 |
+
# Get the final model parameters
|
53 |
+
slope = model.linear.weight.item()
|
54 |
+
intercept = model.linear.bias.item()
|
55 |
|
56 |
+
# Make predictions
|
57 |
+
model.eval()
|
58 |
+
y_pred_tensor = model(x_tensor)
|
59 |
+
y_pred = y_pred_tensor.detach().numpy()
|
60 |
+
|
61 |
+
# Create scatter plot with regression line
|
|
|
|
|
|
|
62 |
fig, ax = plt.subplots()
|
63 |
+
ax.scatter(x, y, alpha=0.6, label='Data points')
|
64 |
+
ax.plot(x, y_pred, color='red', label='Regression line')
|
65 |
ax.set_title('Scatter Plot with Noise and Number of Data Points')
|
66 |
ax.set_xlabel('X-axis')
|
67 |
ax.set_ylabel('Y-axis')
|
68 |
+
ax.legend()
|
69 |
+
|
70 |
+
# Display slope and intercept in Streamlit
|
71 |
+
st.write(f"**Slope:** {slope}")
|
72 |
+
st.write(f"**Intercept:** {intercept}")
|
73 |
+
|
74 |
+
# Display scatter plot in Streamlit
|
75 |
+
st.pyplot(fig)
|
76 |
+
|
77 |
+
# Plot training loss
|
78 |
+
fig_loss, ax_loss = plt.subplots()
|
79 |
+
ax_loss.plot(range(num_epochs), losses)
|
80 |
+
ax_loss.set_title('Training Loss')
|
81 |
+
ax_loss.set_xlabel('Epoch')
|
82 |
+
ax_loss.set_ylabel('Loss')
|
83 |
|
84 |
+
# Display training loss plot in Streamlit
|
85 |
+
st.pyplot(fig_loss)
|