import streamlit as st import torch import torch.nn as nn import torch.nn.functional as F import matplotlib.pyplot as plt import torchvision.transforms as transforms from torchvision.datasets import CIFAR10 from torch.utils.data import DataLoader # Define the ResNet model class BasicBlock(nn.Module): expansion = 1 def __init__(self, in_planes, planes, stride=1): super(BasicBlock, self).__init__() self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=3, stride=stride, padding=1, bias=False) self.bn1 = nn.BatchNorm2d(planes) self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=1, padding=1, bias=False) self.bn2 = nn.BatchNorm2d(planes) self.shortcut = nn.Sequential() if stride != 1 or in_planes != self.expansion * planes: self.shortcut = nn.Sequential( nn.Conv2d(in_planes, self.expansion * planes, kernel_size=1, stride=stride, bias=False), nn.BatchNorm2d(self.expansion * planes) ) def forward(self, x): identity = x out = F.relu(self.bn1(self.conv1(x))) out = self.bn2(self.conv2(out)) out += self.shortcut(identity) out = F.relu(out) return out class ResNet(nn.Module): def __init__(self, block, num_blocks, num_classes=10): super(ResNet, self).__init__() self.in_planes = 64 self.conv1 = nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1, bias=False) self.bn1 = nn.BatchNorm2d(64) self.layer1 = self._make_layer(block, 64, num_blocks[0], stride=1) self.layer2 = self._make_layer(block, 128, num_blocks[1], stride=2) self.layer3 = self._make_layer(block, 256, num_blocks[2], stride=2) self.layer4 = self._make_layer(block, 512, num_blocks[3], stride=2) self.linear = nn.Linear(512 * block.expansion, num_classes) def _make_layer(self, block, planes, num_blocks, stride): strides = [stride] + [1] * (num_blocks - 1) layers = [] for stride in strides: layers.append(block(self.in_planes, planes, stride)) self.in_planes = planes * block.expansion return nn.Sequential(*layers) def forward(self, x): out = F.relu(self.bn1(self.conv1(x))) out = self.layer1(out) out = self.layer2(out) out = self.layer3(out) out = self.layer4(out) out = F.avg_pool2d(out, 4) out = out.view(out.size(0), -1) out = self.linear(out) return out def ResNet18(): return ResNet(BasicBlock, [2, 2, 2, 2]) # Define a function to load CIFAR-10 dataset def load_data(): transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))]) train_set = CIFAR10(root='./data', train=True, download=True, transform=transform) train_loader = DataLoader(train_set, batch_size=100, shuffle=True, num_workers=2) return train_loader # Streamlit Interface st.title('ResNet with Streamlit') st.write("This is an example of integrating a ResNet model with Streamlit.") # Load data button if st.button('Load Data'): st.write("Loading CIFAR-10 data...") train_loader = load_data() st.write("Data loaded successfully!") # Initialize and test the model if st.button('Initialize and Test ResNet18'): net = ResNet18() sample_input = torch.randn(1, 3, 32, 32) output = net(sample_input) st.write("Output size: ", output.size()) # Train the model (for demonstration, we'll just do one epoch) if st.button('Train ResNet18'): st.write("Training ResNet18 on CIFAR-10...") net = ResNet18() train_loader = load_data() criterion = nn.CrossEntropyLoss() optimizer = torch.optim.Adam(net.parameters(), lr=0.001) net.train() for epoch in range(1): # Single epoch for demonstration running_loss = 0.0 for i, data in enumerate(train_loader, 0): inputs, labels = data optimizer.zero_grad() outputs = net(inputs) loss = criterion(outputs, labels) loss.backward() optimizer.step() running_loss += loss.item() if i % 100 == 99: # Print every 100 mini-batches st.write(f'Epoch [{epoch + 1}], Step [{i + 1}], Loss: {running_loss / 100:.4f}') running_loss = 0.0 st.write("Training complete!") # Plotting example (dummy plot for demonstration) if st.button('Show Plot'): st.write("Displaying a sample plot...") fig, ax = plt.subplots() ax.plot([1, 2, 3, 4], [1, 4, 2, 3]) st.pyplot(fig) # To run the Streamlit app, use the command below in your terminal: # streamlit run your_script_name.py