import streamlit as st import torch import torch.nn as nn import torch.optim as optim import torchvision import torchvision.transforms as transforms import matplotlib.pyplot as plt from torch.utils.data import DataLoader import numpy as np # Device configuration device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') # Streamlit interface st.title("CNN for Image Classification using CIFAR-10") # Hyperparameters num_epochs = st.sidebar.slider("Number of epochs", 1, 20, 10) batch_size = st.sidebar.slider("Batch size", 10, 200, 100, step=10) learning_rate = st.sidebar.slider("Learning rate", 0.0001, 0.01, 0.001, step=0.0001) # CIFAR-10 dataset transform = transforms.Compose( [transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))]) train_dataset = torchvision.datasets.CIFAR10(root='./data', train=True, download=True, transform=transform) test_dataset = torchvision.datasets.CIFAR10(root='./data', train=False, download=True, transform=transform) train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True) test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False) # Define a Convolutional Neural Network class CNN(nn.Module): def __init__(self): super(CNN, self).__init__() self.layer1 = nn.Sequential( nn.Conv2d(3, 32, kernel_size=3, padding=1), nn.BatchNorm2d(32), nn.ReLU(), nn.MaxPool2d(kernel_size=2, stride=2)) self.layer2 = nn.Sequential( nn.Conv2d(32, 64, kernel_size=3), nn.BatchNorm2d(64), nn.ReLU(), nn.MaxPool2d(2)) # Automatically determine the size of the flattened features after convolution and pooling self._to_linear = None self.convs(torch.randn(1, 3, 32, 32)) self.fc1 = nn.Linear(self._to_linear, 600) self.drop = nn.Dropout2d(0.25) self.fc2 = nn.Linear(600, 100) self.fc3 = nn.Linear(100, 10) def convs(self, x): x = self.layer1(x) x = self.layer2(x) if self._to_linear is None: self._to_linear = x.view(x.size(0), -1).shape[1] return x def forward(self, x): x = self.convs(x) x = x.view(x.size(0), -1) x = self.fc1(x) x = self.drop(x) x = self.fc2(x) x = self.fc3(x) return x model = CNN().to(device) # Loss and optimizer criterion = nn.CrossEntropyLoss() optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate) # Button to start training if st.button("Start Training"): # Lists to store losses train_losses = [] test_losses = [] # Train the model total_step = len(train_loader) for epoch in range(num_epochs): train_loss = 0 for i, (images, labels) in enumerate(train_loader): images = images.to(device) labels = labels.to(device) # Forward pass outputs = model(images) loss = criterion(outputs, labels) # Backward and optimize optimizer.zero_grad() loss.backward() optimizer.step() train_loss += loss.item() train_loss /= total_step train_losses.append(train_loss) st.write(f'Epoch [{epoch+1}/{num_epochs}], Loss: {train_loss:.4f}') # Test the model model.eval() with torch.no_grad(): test_loss = 0 correct = 0 total = 0 for images, labels in test_loader: images = images.to(device) labels = labels.to(device) outputs = model(images) loss = criterion(outputs, labels) test_loss += loss.item() _, predicted = torch.max(outputs.data, 1) total += labels.size(0) correct += (predicted == labels).sum().item() test_loss /= len(test_loader) test_losses.append(test_loss) accuracy = 100 * correct / total st.write(f'Test Loss: {test_loss:.4f}, Accuracy: {accuracy:.2f}%') model.train() # Plotting the loss fig, ax = plt.subplots() ax.plot(range(1, num_epochs + 1), train_losses, label='Train Loss') ax.plot(range(1, num_epochs + 1), test_losses, label='Test Loss') ax.set_xlabel('Epoch') ax.set_ylabel('Loss') ax.set_title('Training and Test Loss') ax.legend() st.pyplot(fig) # Save the model checkpoint torch.save(model.state_dict(), 'cnn_model.pth') st.write("Model training completed and saved as 'cnn_model.pth'")