import streamlit as st import torch from transformers import AutoTokenizer, AutoModelForSequenceClassification import matplotlib.pyplot as plt import seaborn as sns # Load pre-trained model and tokenizer model_name = "distilbert-base-uncased-finetuned-sst-2-english" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForSequenceClassification.from_pretrained(model_name) def analyze_sentiment(text): inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True, max_length=512) outputs = model(**inputs) probs = torch.nn.functional.softmax(outputs.logits, dim=-1) return probs.detach().numpy()[0] st.title("Sentiment Analysis with Transformer") prompt_text = "rt NLP trnsf xmpl w PyTrc Hggng Fc, nd Strml ntrfc fr npts tpts, ncld mtpl grph f ncsry. Cd z t ct pst." st.write(f"**Prompt:** {prompt_text}") user_input = st.text_area("Enter text for sentiment analysis:", "I love this product!") if st.button("Analyze Sentiment"): sentiment_scores = analyze_sentiment(user_input) st.write("Sentiment Scores:") st.write(f"Negative: {sentiment_scores[0]:.4f}") st.write(f"Positive: {sentiment_scores[1]:.4f}") # Create and display multiple graphs fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(12, 4)) # Bar plot ax1.bar(['Negative', 'Positive'], sentiment_scores) ax1.set_ylabel('Score') ax1.set_title('Sentiment Analysis Results (Bar Plot)') # Pie chart ax2.pie(sentiment_scores, labels=['Negative', 'Positive'], autopct='%1.1f%%') ax2.set_title('Sentiment Analysis Results (Pie Chart)') st.pyplot(fig) # Heatmap fig, ax = plt.subplots(figsize=(8, 2)) sns.heatmap([sentiment_scores], annot=True, cmap="coolwarm", cbar=False, ax=ax) ax.set_xticklabels(['Negative', 'Positive']) ax.set_yticklabels(['Sentiment']) ax.set_title('Sentiment Analysis Results (Heatmap)') st.pyplot(fig) st.write("Note: This example uses a pre-trained model for English sentiment analysis.")