# Install required packages # !pip install streamlit torch torchvision matplotlib # Import Libraries import streamlit as st import torch import torch.nn as nn import torch.optim as optim import torchvision # Add this import from torchvision import datasets, models, transforms from torch.utils.data import DataLoader, Subset import numpy as np import time import copy # Add this import import matplotlib.pyplot as plt # Streamlit Interface st.title("Simple ResNet Fine-Tuning Example") # User Inputs st.sidebar.header("Model Parameters") batch_size = st.sidebar.number_input("Batch Size", value=32) num_epochs = st.sidebar.number_input("Number of Epochs", value=5) learning_rate = st.sidebar.number_input("Learning Rate", value=0.001) # Data Preparation Section st.markdown(""" ### Data Preparation We will use a small subset of the CIFAR-10 dataset for quick experimentation. The dataset will be split into training and validation sets, and transformations will be applied to normalize the data. """) transform = transforms.Compose([ transforms.Resize((224, 224)), transforms.ToTensor(), transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)) ]) full_dataset = datasets.CIFAR10(root='./data', train=True, download=True, transform=transform) subset_indices = list(range(1000)) # Use only 1000 samples for simplicity subset_dataset = Subset(full_dataset, subset_indices) train_size = int(0.8 * len(subset_dataset)) val_size = len(subset_dataset) - train_size train_dataset, val_dataset = torch.utils.data.random_split(subset_dataset, [train_size, val_size]) train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True, num_workers=4) val_loader = DataLoader(val_dataset, batch_size=batch_size, shuffle=False, num_workers=4) dataloaders = {'train': train_loader, 'val': val_loader} class_names = full_dataset.classes device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") # Visualize a few training images st.markdown("#### Sample Training Images") def imshow(inp, title=None): inp = inp.numpy().transpose((1, 2, 0)) mean = np.array([0.485, 0.456, 0.406]) std = np.array([0.229, 0.224, 0.225]) inp = std * inp + mean inp = np.clip(inp, 0, 1) fig, ax = plt.subplots() ax.imshow(inp) if title is not None: ax.set_title(title) st.pyplot(fig) inputs, classes = next(iter(dataloaders['train'])) out = torchvision.utils.make_grid(inputs) imshow(out, title=[class_names[x] for x in classes]) # Model Preparation Section st.markdown(""" ### Model Preparation We will use a pre-trained ResNet-18 model and fine-tune the final fully connected layer to match the number of classes in our custom dataset. """) # Load Pre-trained ResNet Model model_ft = models.resnet18(pretrained=True) num_ftrs = model_ft.fc.in_features model_ft.fc = nn.Linear(num_ftrs, len(class_names)) model_ft = model_ft.to(device) # Define Loss Function and Optimizer criterion = nn.CrossEntropyLoss() optimizer_ft = optim.SGD(model_ft.parameters(), lr=learning_rate, momentum=0.9) # Training Section st.markdown(""" ### Training We will train the model using stochastic gradient descent (SGD) with a learning rate scheduler. The training and validation loss and accuracy will be plotted to monitor the training process. """) # Train and Evaluate the Model def train_model(model, criterion, optimizer, num_epochs=5): best_model_wts = copy.deepcopy(model.state_dict()) best_acc = 0.0 train_loss_history = [] val_loss_history = [] train_acc_history = [] val_acc_history = [] for epoch in range(num_epochs): st.write(f'Epoch {epoch+1}/{num_epochs}') st.write('-' * 10) for phase in ['train', 'val']: if phase == 'train': model.train() else: model.eval() running_loss = 0.0 running_corrects = 0 for inputs, labels in dataloaders[phase]: inputs = inputs.to(device) labels = labels.to(device) optimizer.zero_grad() with torch.set_grad_enabled(phase == 'train'): outputs = model(inputs) _, preds = torch.max(outputs, 1) loss = criterion(outputs, labels) if phase == 'train': loss.backward() optimizer.step() running_loss += loss.item() * inputs.size(0) running_corrects += torch.sum(preds == labels.data) epoch_loss = running_loss / len(dataloaders[phase].dataset) epoch_acc = running_corrects.double() / len(dataloaders[phase].dataset) if phase == 'train': train_loss_history.append(epoch_loss) train_acc_history.append(epoch_acc) else: val_loss_history.append(epoch_loss) val_acc_history.append(epoch_acc) st.write(f'{phase} Loss: {epoch_loss:.4f} Acc: {epoch_acc:.4f}') if phase == 'val' and epoch_acc > best_acc: best_acc = epoch_acc best_model_wts = copy.deepcopy(model.state_dict()) model.load_state_dict(best_model_wts) # Plot training history fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(15, 5)) ax1.plot(train_loss_history, label='Training Loss') ax1.plot(val_loss_history, label='Validation Loss') ax1.legend(loc='upper right') ax1.set_title('Training and Validation Loss') ax2.plot(train_acc_history, label='Training Accuracy') ax2.plot(val_acc_history, label='Validation Accuracy') ax2.legend(loc='lower right') ax2.set_title('Training and Validation Accuracy') st.pyplot(fig) return model if st.button('Train Model'): model_ft = train_model(model_ft, criterion, optimizer_ft, num_epochs) # Save the Model torch.save(model_ft.state_dict(), 'fine_tuned_resnet.pth') st.write("Model saved as 'fine_tuned_resnet.pth'")