Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -2,9 +2,11 @@
|
|
2 |
#------------------------------------------------------------------------------
|
3 |
#------------------------------------------------------------------------------
|
4 |
|
|
|
5 |
import streamlit as st
|
6 |
import spacy
|
7 |
import spacy_streamlit
|
|
|
8 |
from io import StringIO
|
9 |
import pandas as pd
|
10 |
|
@@ -132,33 +134,64 @@ with st.spinner("Text wird eingelesen..."):
|
|
132 |
text = st.text_area(" ", DEFAULT_TEXT, height=200)
|
133 |
st.success("Text ist eingelesen!")
|
134 |
|
|
|
135 |
#------------------------------------------------------------------------------
|
136 |
#------------------------------------------------------------------------------
|
137 |
|
|
|
138 |
#Farben für die verschiedenen Entitäten
|
139 |
colors = {"PER": "#fdec3e", "PERSON": "#fdec3e", "LOC": "#7e56c2", "ORT": "#7e56c2", "ORG": "#209485" , "ORGANISATION": "#209485" , "MISC": "#eb4034", "ZEIT": "#4c9c4b", "OBJEKT": "#7e56c2"}
|
140 |
|
141 |
#Spacy-Streamlit NER Visualizer
|
142 |
-
|
143 |
#NER-Prozess wird gestartet, je nach Model werden hier die entsprechenden Entitäten gewechselt.
|
144 |
with st.spinner('Named Entities werden gesucht...'):
|
145 |
doc = nlp(text)
|
146 |
if model == "de_fnhd_nerdh":
|
147 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
148 |
else:
|
149 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
150 |
st.success('Suchprozess ist abgeschlossen!')
|
151 |
|
152 |
#------------------------------------------------------------------------------
|
153 |
#------------------------------------------------------------------------------
|
|
|
|
|
|
|
|
|
|
|
|
|
154 |
|
155 |
#Um die NER-Ergebnisse downloaden zu können, werden die Entitäten in einer csv gespeichert
|
156 |
results = []
|
157 |
for ent in doc.ents:
|
158 |
-
|
|
|
159 |
df_results = pd.DataFrame(results, columns = ['text', 'label'])
|
160 |
csv = convert_df(df_results)
|
161 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
162 |
|
163 |
#------------------------------------------------------------------------------
|
164 |
#------------------------------------------------------------------------------
|
@@ -177,22 +210,6 @@ if model == "de_fnhd_nerdh":
|
|
177 |
```
|
178 |
''')
|
179 |
|
180 |
-
#------------------------------------------------------------------------------
|
181 |
-
#------------------------------------------------------------------------------
|
182 |
-
|
183 |
-
#Download-Button
|
184 |
-
st.sidebar.markdown('\n\n')
|
185 |
-
st.sidebar.markdown('''
|
186 |
-
### NER-Ergebnnisse in einer .csv-Datei downloaden.
|
187 |
-
Die Datei enthält alle Entitäts-Typen.
|
188 |
-
''')
|
189 |
-
st.sidebar.download_button(
|
190 |
-
"Ergebnisse downloaden",
|
191 |
-
csv,
|
192 |
-
"ner_results_" + model + ".csv",
|
193 |
-
"text/csv",
|
194 |
-
key='download-csv'
|
195 |
-
)
|
196 |
|
197 |
#------------------------------------------------------------------------------
|
198 |
#------------------------------------------------------------------------------
|
|
|
2 |
#------------------------------------------------------------------------------
|
3 |
#------------------------------------------------------------------------------
|
4 |
|
5 |
+
from aem import customroot
|
6 |
import streamlit as st
|
7 |
import spacy
|
8 |
import spacy_streamlit
|
9 |
+
from spacy import displacy
|
10 |
from io import StringIO
|
11 |
import pandas as pd
|
12 |
|
|
|
134 |
text = st.text_area(" ", DEFAULT_TEXT, height=200)
|
135 |
st.success("Text ist eingelesen!")
|
136 |
|
137 |
+
st.markdown("---")
|
138 |
#------------------------------------------------------------------------------
|
139 |
#------------------------------------------------------------------------------
|
140 |
|
141 |
+
st.markdown("### Named Entities")
|
142 |
#Farben für die verschiedenen Entitäten
|
143 |
colors = {"PER": "#fdec3e", "PERSON": "#fdec3e", "LOC": "#7e56c2", "ORT": "#7e56c2", "ORG": "#209485" , "ORGANISATION": "#209485" , "MISC": "#eb4034", "ZEIT": "#4c9c4b", "OBJEKT": "#7e56c2"}
|
144 |
|
145 |
#Spacy-Streamlit NER Visualizer
|
|
|
146 |
#NER-Prozess wird gestartet, je nach Model werden hier die entsprechenden Entitäten gewechselt.
|
147 |
with st.spinner('Named Entities werden gesucht...'):
|
148 |
doc = nlp(text)
|
149 |
if model == "de_fnhd_nerdh":
|
150 |
+
entities = st.multiselect('Entitäten auswählen', ['PERSON', 'ORT', 'ORGANISATION', 'OBJEKT', 'ZEIT', 'Alle Entitäten'], default= ['Alle Entitäten'])
|
151 |
+
if 'Alle Entitäten' in entities:
|
152 |
+
entities = ['PERSON', 'ORT', 'ORGANISATION', 'OBJEKT', 'ZEIT']
|
153 |
+
|
154 |
+
options = {"ents": entities,"colors": colors}
|
155 |
+
ent_html = displacy.render(doc, style="ent", options=options, jupyter=False)
|
156 |
+
st.markdown(ent_html, unsafe_allow_html=True)
|
157 |
+
#spacy_streamlit.visualize_ner(doc, labels = ["PERSON", "ORT", "ORGANISATION", "OBJEKT", "ZEIT",], show_table=False, colors = colors)
|
158 |
else:
|
159 |
+
entities = st.multiselect('Entitäten auswählen', ["PER", "LOC", "ORG", "MISC", 'Alle Entitäten'], default= ['Alle Entitäten'])
|
160 |
+
if 'Alle Entitäten' in entities:
|
161 |
+
entities = ["PER", "LOC", "ORG", "MISC"]
|
162 |
+
|
163 |
+
options = {"ents": entities,"colors": colors}
|
164 |
+
ent_html = displacy.render(doc, style="ent", options=options, jupyter=False)
|
165 |
+
st.markdown(ent_html, unsafe_allow_html=True)
|
166 |
+
#spacy_streamlit.visualize_ner(doc, labels = ["PER", "LOC", "ORG", "MISC"], show_table=False, colors = colors)
|
167 |
+
st.markdown(' ')
|
168 |
st.success('Suchprozess ist abgeschlossen!')
|
169 |
|
170 |
#------------------------------------------------------------------------------
|
171 |
#------------------------------------------------------------------------------
|
172 |
+
#Download-Funktion der Entitäten
|
173 |
+
st.sidebar.markdown('\n\n')
|
174 |
+
st.sidebar.markdown('''
|
175 |
+
### NER-Ergebnnisse in einer .csv-Datei downloaden.
|
176 |
+
Die Datei enthält die ausgewählten Entitäten.
|
177 |
+
''')
|
178 |
|
179 |
#Um die NER-Ergebnisse downloaden zu können, werden die Entitäten in einer csv gespeichert
|
180 |
results = []
|
181 |
for ent in doc.ents:
|
182 |
+
if ent.label_ in entities:
|
183 |
+
results.append([ent.text,ent.label_])
|
184 |
df_results = pd.DataFrame(results, columns = ['text', 'label'])
|
185 |
csv = convert_df(df_results)
|
186 |
|
187 |
+
st.sidebar.download_button(
|
188 |
+
"Ergebnisse downloaden",
|
189 |
+
csv,
|
190 |
+
"ner_results_" + model + ".csv",
|
191 |
+
"text/csv",
|
192 |
+
key='download-csv'
|
193 |
+
)
|
194 |
+
|
195 |
|
196 |
#------------------------------------------------------------------------------
|
197 |
#------------------------------------------------------------------------------
|
|
|
210 |
```
|
211 |
''')
|
212 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
213 |
|
214 |
#------------------------------------------------------------------------------
|
215 |
#------------------------------------------------------------------------------
|