File size: 22,797 Bytes
bf75d52
3603153
bf75d52
c20f0de
a425fa9
895a686
8861533
c20f0de
d079c5e
895a686
c20f0de
 
 
 
 
 
 
d248797
 
 
c20f0de
 
 
 
fdd4e85
c20f0de
 
1991ca2
c20f0de
e079737
 
c20f0de
 
e079737
c20f0de
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e079737
c20f0de
 
 
 
 
 
 
 
 
 
 
 
 
 
8861533
c20f0de
 
 
8861533
c20f0de
 
 
 
 
 
 
 
 
 
 
fdd4e85
 
 
 
 
 
 
d503b50
 
df99dda
 
8861533
d503b50
 
 
8861533
a425fa9
711dc9d
 
 
 
 
 
 
 
 
d919aa0
bf75d52
711dc9d
d919aa0
22f31fd
560782b
 
 
d919aa0
d5c3c24
919be7b
d919aa0
 
5053d22
d919aa0
8c58af0
 
 
31d31bd
8c58af0
 
287ff70
8f41051
80eb545
8c58af0
 
 
 
f4facc1
8c58af0
5053d22
 
f4facc1
d503b50
dc4c04d
fb39ca3
fcda2fa
fb39ca3
fcda2fa
fb39ca3
fcda2fa
e525095
d5c3c24
e525095
 
 
 
 
 
f4facc1
 
d460b8a
fcda2fa
d460b8a
fcda2fa
d201c51
 
ff144c6
796ea23
22f31fd
8861533
796ea23
8861533
 
 
c20f0de
260fa64
66cf1e2
c20f0de
e7103e4
2b0e5c7
e7103e4
 
796ea23
e7103e4
d201c51
9b16238
 
d5c3c24
 
bd9cdf6
796ea23
 
 
 
f583e02
c20f0de
9b16238
d5c3c24
 
bd9cdf6
796ea23
d201c51
505427d
260fa64
22f31fd
c4db214
8861533
260fa64
8861533
260fa64
22f31fd
8861533
 
260fa64
d079c5e
 
 
fcda2fa
 
260fa64
 
8861533
22f31fd
 
8861533
 
22f31fd
75e0da4
 
 
505427d
fcda2fa
 
22f31fd
 
260fa64
8861533
 
260fa64
7493d62
f583e02
c20f0de
505427d
fcda2fa
 
260fa64
6c36dd2
8861533
 
260fa64
d079c5e
 
 
505427d
fcda2fa
 
6c36dd2
8861533
 
 
6830d35
8861533
df99dda
6830d35
6c36dd2
22f31fd
505427d
fcda2fa
 
260fa64
8861533
 
 
260fa64
22f31fd
 
 
8861533
75e0da4
8861533
505427d
 
 
22f31fd
 
6830d35
8861533
 
df99dda
6830d35
260fa64
22f31fd
505427d
 
 
260fa64
8861533
cff96fa
505427d
d919aa0
 
8ac2e2e
 
 
7b539ba
 
 
 
 
8ac2e2e
0bc57b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8ac2e2e
 
 
 
 
0bc57b9
 
 
 
5338729
95cc5b2
22f31fd
 
 
 
 
 
 
 
 
 
 
 
 
87c5ef7
22f31fd
350138b
 
95cc5b2
 
 
 
0d8264c
87c5ef7
 
 
 
350138b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
95cc5b2
8ac2e2e
350138b
7493d62
8ac2e2e
 
 
0d8264c
dc4c04d
a73219f
f14dfb1
 
 
 
 
 
 
8ac2e2e
 
 
 
c20f0de
8c58af0
fdd4e85
8c58af0
 
8ac2e2e
 
8c58af0
 
 
 
 
 
 
 
 
 
 
 
 
 
07eb932
 
 
 
 
 
8ac2e2e
07eb932
d919aa0
 
89443f0
a9fe74f
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
import gradio as gr
import os

# PERSISTENT DATA STORAGE: this code is used to make commits 

import json
from huggingface_hub import hf_hub_download, file_exists, HfApi
from random import shuffle
from markdown import markdown

# Global variables which interact with loading and unloading
user_data = {}
current_response = {}
current_question = {} # read-only within gradio blocks
user_id = "no_id"
qIDs = ["mbe_46", "mbe_132", "mbe_287", "mbe_326", "mbe_334", "mbe_389", "mbe_563", "mbe_614", "mbe_642", "mbe_747", "mbe_779", "mbe_826", "mbe_845", "mbe_1042", "mbe_1134"]
mode_options = ["e5", "colbert"]
# Control global variables
step = 0
mode = 0

def load_user_data(id):
    global user_data
    filename = id.replace('@', '_AT_').replace('.', '_DOT_')
    if file_exists(filename = "users/" + filename + ".json", repo_id = "ebrowne/test-data", repo_type = "dataset", token = os.getenv("HF_TOKEN")):
        print("File exists, downloading data.")
        # If the ID exists, download the file from HuggingFace
        path = hf_hub_download(repo_id = "ebrowne/test-data", token = os.getenv("HF_TOKEN"), filename = "users/" + filename + ".json", repo_type = "dataset")
        # Add their current status to user_data
        with open(path, "r") as f:
            user_data = json.load(f)
    else:
        # If the ID doesn't exist, create a format for the file and upload it to HuggingFace
        print("File does not exist, creating user.")
        shuffle(qIDs)
        modes = []
        for i in range(len(qIDs)): 
            temp = mode_options[:]
            shuffle(temp)
            modes.append(temp)
        # This is the format for a user's file on HuggingFace
        user_data = {
            "user_id": id, # original in email format, which was passed here
            "order": qIDs, # randomized order for each user
            "modes": modes, # randomized order for each user
            "current": 0, # user starts on first question
            "responses": [] # formatted as a list of current_responses
        }
        # Run the update method to upload the new JSON file to HuggingFace
        update_huggingface(id)

def update_huggingface(id):
    global user_data
    print("Updating data...")
    filename = id.replace('@', '_AT_').replace('.', '_DOT_')
    # Create a local file that will be uploaded to HuggingFace
    with open(filename + ".json", "w") as f:
        json.dump(user_data, f)
    # Upload to hub (overwriting existing files...)
    api = HfApi()
    api.upload_file(
        path_or_fileobj=filename + ".json",
        path_in_repo="users/" + filename + ".json",
        repo_id="ebrowne/test-data",
        repo_type="dataset",
        token = os.getenv("HF_TOKEN")
    )

def reset_current_response(qid):
    global current_response
    current_response = {
        "user_id": user_id, 
        "question_id": qid,
        "user_answer": 0, 
        "e5_scores": [], # list of ten [score, score, score, score]
        "e5_set": [], # two values
        "e5_generation": [], # two values
        "colbert_scores": [], 
        "colbert_set": [],
        "colbert_generation": [],
        "gold_set": [],
        "gold_generation": []
    }

with open("question_data.json", "r") as f:
    all_questions = json.load(f)

# Loads the user's current question — this is the first question that the user has not made any progress on.
def load_current_question():
    global current_question 
    q_index = user_data["current"]
    if q_index >= len(all_questions):
        print("Done")
        gr.Info("You've finished — thank you so much! There are no more questions. :)")
        current_question = {"question": "You're done! Thanks so much for your help.", "answers": ["I want to log out now.", "I want to keep answering questions.","I want to keep answering questions.", "I want to keep answering questions."], "correct_answer_index": 0, "top10_e5": ["You're done; thank you!", "You're done; thank you!", "You're done; thank you!", "You're done; thank you!", "You're done; thank you!", "You're done; thank you!", "You're done; thank you!", "You're done; thank you!", "You're done; thank you!", "You're done; thank you!"], "generation_e5": "I don't know how to exit this code right now, so you're in an endless loop of this question until you quit.", "top10_colbert": ["You're done; thank you!", "You're done; thank you!", "You're done; thank you!", "You're done; thank you!", "You're done; thank you!", "You're done; thank you!", "You're done; thank you!", "You're done; thank you!", "You're done; thank you!", "You're done; thank you!"], "generation_colbert": "I don't know how to exit this code right now, so you're in an endless loop of this question until you quit.", "top10_contains_gold_passage": False, "gold_passage": "GOLD PASSAGE: LOG OFF!", "gold_passage_generation": "what do you gain"}
        reset_current_response("USER FINISHED")
    else:
        qid = user_data["order"][q_index]
        current_question = all_questions[qid]
        reset_current_response(user_data["order"][q_index])

# THEMING: colors and styles (Gradio native)

theme = gr.themes.Soft(
    primary_hue="sky",
    secondary_hue="sky",
    neutral_hue="slate",
    font=[gr.themes.GoogleFont('Inter'), 'ui-sans-serif', 'system-ui', 'sans-serif'],
)

# BLOCKS: main user interface

with gr.Blocks(theme = theme) as user_eval:
    # Title text introducing study
    forward_btn = gr.Textbox("unchanged", visible = False, elem_id = "togglebutton") # used for toggling windows
    gr.HTML("""
    <h1> Legal Retriever Evaluation Study </h1>
    <p> Score the passages based on the question and provided answer choices. Detailed instructions are found <a href="https://docs.google.com/document/d/1ReODJ0hlXz_M3kE2UG1cwSRVoyDLQo88OvG71Gt8lUQ/edit?usp=sharing" target="_blank">here</a>. </p> 
    """)
    gr.Markdown("---")

    # Passages and user evaluations thereof
    with gr.Row(equal_height = False, visible = False) as evals:
        # Passage text
        with gr.Column(scale = 2) as passages:
            selection = gr.HTML()
            """
            selection = gr.HTML("
            <h2> Retrieved Passage </h2>
            <p> " + current_question["top10_" + user_data["modes"][user_data["current"]][mode]][0] + "</p>")
            """
            print(step)
            line = gr.Markdown("---")
            # New answers is able to render the Q and A with formatting. It doesn't change the contents of the answers.
            # new_answers = current_question["answers"].copy()
            # new_answers[current_question["correct_answer_index"]] = "**" + current_question["answers"][current_question["correct_answer_index"]] + "** ✅"
            passage_display = gr.Markdown() 
            temp = """
            ## Question and Answer
            """

        # Scoring box
        with gr.Column(scale = 1) as scores_p:
            desc_0 = gr.Markdown("Does the passage describe **a legal rule or principle?**")
            eval_0 = gr.Radio(["Yes", "No"], label = "Legal Rule?")
            desc_1 = gr.Markdown("How **relevant** is this passage to the question?")
            eval_1 = gr.Slider(1, 5, step = 0.5, label = "Relevance", value = 3)
            desc_2 = gr.Markdown("How would you rate the passage's **quality** in terms of detail, clarity, and focus?")
            eval_2 = gr.Slider(1, 5, step = 0.5, label = "Quality", value = 3)
            desc_3 = gr.Markdown("How effectively does the passage **lead you to the correct answer?**")
            eval_3 = gr.Slider(-2, 2, step = 0.5, label = "Helpfulness", value = 0)
            btn_p = gr.Button("Next", interactive = False)
            # Users must enter in a yes/no value before moving on in the radio area
            def sanitize_score(rad):
                if rad == None:
                    return {btn_p: gr.Button(interactive = False)}
                else:
                    return {btn_p: gr.Button(interactive = True)}
            eval_0.change(fn = sanitize_score, inputs = [eval_0], outputs = [btn_p])
        
        with gr.Column(scale = 1, visible = False) as scores_g: 
            helps = gr.Markdown("Does this information **help answer** the question?")
            eval_helps = gr.Slider(-2, 2, step = 0.5, label = "Helpfulness", value = 0)
            satisfied = gr.Markdown("How **satisfied** are you by this answer?")
            eval_satisfied = gr.Slider(1, 5, step = 0.5, label = "User Satisfaction", value = 3)
            btn_g = gr.Button("Next")
        
        def next_p(e0, e1, e2, e3):
            global step
            global mode
            global current_response
            step += 1
            # Add user data to the current response
            current_response[user_data["modes"][user_data["current"]][mode] + "_scores"].append([e0, e1, e2, e3])
            # Next item
            if step == len(current_question["top10_" + user_data["modes"][user_data["current"]][mode]]): # should always be 10
                # Step 10: all sources 
                collapsible_string = "<h2> Set of Passages </h2>\n"
                for i, passage in enumerate(current_question["top10_" + user_data["modes"][user_data["current"]][mode]]):
                    collapsible_string += """
                            <strong>Passage """ + str(i + 1) + """</strong>
                            <p> """ + passage + """ </p>
                            """
                return {
                    selection: gr.HTML(collapsible_string),
                    scores_p: gr.Column(visible = False),
                    scores_g: gr.Column(visible = True),
                    eval_0: gr.Radio(value = None),
                    eval_1: gr.Slider(value = 3),
                    eval_2: gr.Slider(value = 3),
                    eval_3: gr.Slider(value = 0)
                }
            else:
                return {
                    selection: gr.HTML("""
                        <h2> Retrieved Passage </h2> 
                        <p> """ + current_question["top10_" + user_data["modes"][user_data["current"]][mode]][step] + "</p>"),
                    eval_0: gr.Radio(value = None),
                    eval_1: gr.Slider(value = 3),
                    eval_2: gr.Slider(value = 3),
                    eval_3: gr.Slider(value = 0)
                }
        
        def next_g(e_h, e_s): 
            global step 
            global mode
            global user_data
            global current_response
            step += 1
            
            if step == 11:
                # Step 11: guaranteed to be generation
                # Add user data to the current response as SET evaluation, which comes before the generation
                current_response[user_data["modes"][user_data["current"]][mode] + "_set"] = [e_h, e_s]
                return {
                    selection: gr.HTML("""
                        <h2> Autogenerated Response </h2>
                        <p>""" + markdown(current_question["generation_" + user_data["modes"][user_data["current"]][mode]]) + "</p>"),
                    eval_helps: gr.Slider(value = 0),
                    eval_satisfied: gr.Slider(value = 3)
                }
            # Steps 12 and 13 are gold passage + gold passage generation IF it is applicable
            if step > 11: # and not current_question["top10_contains_gold_passage"]
                # When mode is 0 -> reset with mode = 1
                if mode == 0:
                    # The user just evaluated a generation for mode 0
                    current_response[user_data["modes"][user_data["current"]][mode] + "_generation"] = [e_h, e_s]
                    return {
                        selection: gr.HTML("""
                                <h2> Retrieved Passage </h2>
                                <p> """ + current_question["top10_" + user_data["modes"][user_data["current"]][1]][0] + "</p>"), # hard coded: first passage (0) of mode 2 (1),
                        forward_btn: gr.Textbox("load new data"),
                        eval_helps: gr.Slider(value = 0),
                        eval_satisfied: gr.Slider(value = 3)
                    }
                # When mode is 1 -> display GP and GP generation, then switch
                if step == 12: 
                    # The user just evaluated a generation for mode 1
                    current_response[user_data["modes"][user_data["current"]][mode] + "_generation"] = [e_h, e_s]
                    return {
                        selection: gr.HTML("""
                            <h2> Retrieved Passage </h2> 
                            <p> """ + current_question["gold_passage"] + "</p>"),
                        forward_btn: gr.Textbox(),
                        eval_helps: gr.Slider(value = 0),
                        eval_satisfied: gr.Slider(value = 3)
                    }
                elif step == 13: 
                   # The user just evaluated the gold passage
                   current_response["gold_set"] = [e_h, e_s]
                   return {
                        selection: gr.HTML("""
                            <h2> Autogenerated Response </h2>
                            <p> """ + markdown(current_question["gold_passage_generation"]) + "</p>"),
                        forward_btn: gr.Textbox(),
                        eval_helps: gr.Slider(value = 0),
                        eval_satisfied: gr.Slider(value = 3)
                   }
                else: # step = 14
                    # The user just evaluated the gold passage generation
                    current_response["gold_generation"] = [e_h, e_s]
                    user_data["current"] += 1
                    user_data["responses"].append(current_response) # adds new answers to current list of responses
                    update_huggingface(user_id) # persistence — update progress online, save answers
                    load_current_question()
                    return {
                        selection: gr.Markdown("Advancing to the next question..."),
                        forward_btn: gr.Textbox("changed"),
                        eval_helps: gr.Slider(value = 0),
                        eval_satisfied: gr.Slider(value = 3)
                    }
            
            # VERY UNCLEAN CODE: for practical purposes, this else block is unreachable: not current_question["top10_contains_gold_passage"] will always be True
            """
            else: 
                # When mode is 0 -> reset with mode = 1
                if mode == 0:
                    return {
                        selection: gr.HTML(\"""
                                <h2> Retrieved Passage </h2>
                                <p> \""" + current_question["top10_" + user_data["modes"][user_data["current"]][1]][0] + "</p>"), # hard coded: first passage (0) of mode 2 (1)
                        forward_btn: gr.Textbox("load new data"),
                        eval_helps: gr.Slider(value = 1),
                        eval_satisfied: gr.Slider(value = 1)
                    }
                # When mode is 1 -> change question
                user_data["current"] += 1
                user_data["responses"].append(current_response) # adds new answers to current list of responses
                # Update stored data with new current, additional data
                update_huggingface(user_id)
                load_current_question()
                return {
                    selection: gr.Markdown("Advancing to the next question..."),
                    forward_btn: gr.Textbox("changed"),
                    eval_helps: gr.Slider(value = 1),
                    eval_satisfied: gr.Slider(value = 1)         
                }
                """
        btn_p.click(fn = next_p, inputs = [eval_0, eval_1, eval_2, eval_3], outputs = [selection, scores_p, scores_g, eval_0, eval_1, eval_2, eval_3])
        btn_g.click(fn = next_g, inputs = [eval_helps, eval_satisfied], outputs = [selection, forward_btn, eval_helps, eval_satisfied])

    # Question and answering dynamics
    with gr.Row(equal_height = False, visible = False) as question:
        with gr.Column():
            gr.Markdown("**Question**")
            q_text = gr.Markdown("Question")
            a = gr.Button("A")
            b = gr.Button("B")
            c = gr.Button("C")
            d = gr.Button("D")

            # I know this is inefficient...
            def answer_a():
                global current_response 
                current_response["user_answer"] = 0
                return {
                    question: gr.Row(visible = False),
                    evals: gr.Row(visible = True)
                }
            def answer_b():
                global current_response 
                current_response["user_answer"] = 1
                return {
                    question: gr.Row(visible = False),
                    evals: gr.Row(visible = True)
                }
            def answer_c():
                global current_response 
                current_response["user_answer"] = 2
                return {
                    question: gr.Row(visible = False),
                    evals: gr.Row(visible = True)
                }
            def answer_d():
                global current_response 
                current_response["user_answer"] = 3
                return {
                    question: gr.Row(visible = False),
                    evals: gr.Row(visible = True)
                }
            
            a.click(fn = answer_a, outputs = [question, evals])
            b.click(fn = answer_b, outputs = [question, evals])
            c.click(fn = answer_c, outputs = [question, evals])
            d.click(fn = answer_d, outputs = [question, evals])
    
    def toggle():
        global step 
        global mode
        step = 0
        if mode == 0:
            mode = 1 # update mode to 1, will restart with same Q, next set of Ps
            print("Next set of passages for same question")
            return {
                scores_p: gr.Column(visible = True),
                scores_g: gr.Column(visible = False),
                evals: gr.Row(visible = True),
                question: gr.Row(visible = False),
            }
        else:
            mode = 0 # reset mode to 0, will restart with new Q (set up new Q), first set of Ps
            print("New question")
            new_answers = current_question["answers"].copy()
            new_answers[current_question["correct_answer_index"]] = "**" + current_question["answers"][current_question["correct_answer_index"]] + "** ✅"
            return {
                scores_p: gr.Column(visible = True),
                scores_g: gr.Column(visible = False),
                evals: gr.Row(visible = False),
                question: gr.Row(visible = True),
                q_text: gr.Markdown(current_question["question"]),
                a: gr.Button(current_question["answers"][0]),
                b: gr.Button(current_question["answers"][1]),
                c: gr.Button(current_question["answers"][2]),
                d: gr.Button(current_question["answers"][3]),
                passage_display: gr.Markdown("""
                        ## Question and Answer
                        *""" + current_question["question"] + 
                        """* \n
                        + """ + new_answers[0] + 
                        """ \n
                        + """ + new_answers[1] + 
                        """ \n
                        + """ + new_answers[2] + 
                        """ \n
                        + """ + new_answers[3]),
                selection: gr.HTML("""
                    <h2> Retrieved Passage </h2>
                    <p> """ + current_question["top10_" + user_data["modes"][user_data["current"]][mode]][0] + "</p>")
            }

    forward_btn.change(fn = toggle, inputs = None, outputs = [scores_p, scores_g, evals, question, q_text, a, b, c, d, passage_display, selection])

    with gr.Row() as login:
        with gr.Column():
            gr.Markdown("# Enter email to start")
            gr.Markdown("Thank you so much for your participation in our study! We're using emails to keep track of which questions you've answered and which you haven't seen. Use the same email every time to keep your progress saved. :)")
            email = gr.Textbox(label = "Email", placeholder = "[email protected]")
            s = gr.Button("Start!", interactive = False)
            
            def sanitize_login(text):
                if text == "":
                    return {s: gr.Button(interactive = False)}
                else:
                    return {s: gr.Button(interactive = True)}
            email.change(fn = sanitize_login, inputs = [email], outputs = [s])
      
            def submit_email(email):
                global user_id
                user_id = email
                load_user_data(user_id) # calls login, downloads data, initializes session
                # After loading user data, update with current question
                load_current_question()
                new_answers = current_question["answers"].copy()
                new_answers[current_question["correct_answer_index"]] = "**" + current_question["answers"][current_question["correct_answer_index"]] + "** ✅"
                return {
                    question: gr.Row(visible = True),
                    login: gr.Row(visible = False),
                    selection: gr.HTML("""
                    <h2> Retrieved Passage </h2>
                    <p> """ + current_question["top10_" + user_data["modes"][user_data["current"]][mode]][0] + "</p>"),
                    passage_display: gr.Markdown("""
                        ## Question and Answer
                        *""" + current_question["question"] + 
                        """* \n
                        + """ + new_answers[0] + 
                        """ \n
                        + """ + new_answers[1] + 
                        """ \n
                        + """ + new_answers[2] + 
                        """ \n
                        + """ + new_answers[3]),
                    q_text: gr.Markdown(current_question["question"]),
                    a: gr.Button(current_question["answers"][0]),
                    b: gr.Button(current_question["answers"][1]),
                    c: gr.Button(current_question["answers"][2]),
                    d: gr.Button(current_question["answers"][3])
                }
            s.click(fn = submit_email, inputs = [email], outputs = [question, login, selection, passage_display, q_text, a, b, c, d])

# Starts on question, switches to evaluation after the user answers
user_eval.launch()

# https://github.com/gradio-app/gradio/issues/5791