Spaces:
Sleeping
Sleeping
File size: 22,797 Bytes
bf75d52 3603153 bf75d52 c20f0de a425fa9 895a686 8861533 c20f0de d079c5e 895a686 c20f0de d248797 c20f0de fdd4e85 c20f0de 1991ca2 c20f0de e079737 c20f0de e079737 c20f0de e079737 c20f0de 8861533 c20f0de 8861533 c20f0de fdd4e85 d503b50 df99dda 8861533 d503b50 8861533 a425fa9 711dc9d d919aa0 bf75d52 711dc9d d919aa0 22f31fd 560782b d919aa0 d5c3c24 919be7b d919aa0 5053d22 d919aa0 8c58af0 31d31bd 8c58af0 287ff70 8f41051 80eb545 8c58af0 f4facc1 8c58af0 5053d22 f4facc1 d503b50 dc4c04d fb39ca3 fcda2fa fb39ca3 fcda2fa fb39ca3 fcda2fa e525095 d5c3c24 e525095 f4facc1 d460b8a fcda2fa d460b8a fcda2fa d201c51 ff144c6 796ea23 22f31fd 8861533 796ea23 8861533 c20f0de 260fa64 66cf1e2 c20f0de e7103e4 2b0e5c7 e7103e4 796ea23 e7103e4 d201c51 9b16238 d5c3c24 bd9cdf6 796ea23 f583e02 c20f0de 9b16238 d5c3c24 bd9cdf6 796ea23 d201c51 505427d 260fa64 22f31fd c4db214 8861533 260fa64 8861533 260fa64 22f31fd 8861533 260fa64 d079c5e fcda2fa 260fa64 8861533 22f31fd 8861533 22f31fd 75e0da4 505427d fcda2fa 22f31fd 260fa64 8861533 260fa64 7493d62 f583e02 c20f0de 505427d fcda2fa 260fa64 6c36dd2 8861533 260fa64 d079c5e 505427d fcda2fa 6c36dd2 8861533 6830d35 8861533 df99dda 6830d35 6c36dd2 22f31fd 505427d fcda2fa 260fa64 8861533 260fa64 22f31fd 8861533 75e0da4 8861533 505427d 22f31fd 6830d35 8861533 df99dda 6830d35 260fa64 22f31fd 505427d 260fa64 8861533 cff96fa 505427d d919aa0 8ac2e2e 7b539ba 8ac2e2e 0bc57b9 8ac2e2e 0bc57b9 5338729 95cc5b2 22f31fd 87c5ef7 22f31fd 350138b 95cc5b2 0d8264c 87c5ef7 350138b 95cc5b2 8ac2e2e 350138b 7493d62 8ac2e2e 0d8264c dc4c04d a73219f f14dfb1 8ac2e2e c20f0de 8c58af0 fdd4e85 8c58af0 8ac2e2e 8c58af0 07eb932 8ac2e2e 07eb932 d919aa0 89443f0 a9fe74f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 |
import gradio as gr
import os
# PERSISTENT DATA STORAGE: this code is used to make commits
import json
from huggingface_hub import hf_hub_download, file_exists, HfApi
from random import shuffle
from markdown import markdown
# Global variables which interact with loading and unloading
user_data = {}
current_response = {}
current_question = {} # read-only within gradio blocks
user_id = "no_id"
qIDs = ["mbe_46", "mbe_132", "mbe_287", "mbe_326", "mbe_334", "mbe_389", "mbe_563", "mbe_614", "mbe_642", "mbe_747", "mbe_779", "mbe_826", "mbe_845", "mbe_1042", "mbe_1134"]
mode_options = ["e5", "colbert"]
# Control global variables
step = 0
mode = 0
def load_user_data(id):
global user_data
filename = id.replace('@', '_AT_').replace('.', '_DOT_')
if file_exists(filename = "users/" + filename + ".json", repo_id = "ebrowne/test-data", repo_type = "dataset", token = os.getenv("HF_TOKEN")):
print("File exists, downloading data.")
# If the ID exists, download the file from HuggingFace
path = hf_hub_download(repo_id = "ebrowne/test-data", token = os.getenv("HF_TOKEN"), filename = "users/" + filename + ".json", repo_type = "dataset")
# Add their current status to user_data
with open(path, "r") as f:
user_data = json.load(f)
else:
# If the ID doesn't exist, create a format for the file and upload it to HuggingFace
print("File does not exist, creating user.")
shuffle(qIDs)
modes = []
for i in range(len(qIDs)):
temp = mode_options[:]
shuffle(temp)
modes.append(temp)
# This is the format for a user's file on HuggingFace
user_data = {
"user_id": id, # original in email format, which was passed here
"order": qIDs, # randomized order for each user
"modes": modes, # randomized order for each user
"current": 0, # user starts on first question
"responses": [] # formatted as a list of current_responses
}
# Run the update method to upload the new JSON file to HuggingFace
update_huggingface(id)
def update_huggingface(id):
global user_data
print("Updating data...")
filename = id.replace('@', '_AT_').replace('.', '_DOT_')
# Create a local file that will be uploaded to HuggingFace
with open(filename + ".json", "w") as f:
json.dump(user_data, f)
# Upload to hub (overwriting existing files...)
api = HfApi()
api.upload_file(
path_or_fileobj=filename + ".json",
path_in_repo="users/" + filename + ".json",
repo_id="ebrowne/test-data",
repo_type="dataset",
token = os.getenv("HF_TOKEN")
)
def reset_current_response(qid):
global current_response
current_response = {
"user_id": user_id,
"question_id": qid,
"user_answer": 0,
"e5_scores": [], # list of ten [score, score, score, score]
"e5_set": [], # two values
"e5_generation": [], # two values
"colbert_scores": [],
"colbert_set": [],
"colbert_generation": [],
"gold_set": [],
"gold_generation": []
}
with open("question_data.json", "r") as f:
all_questions = json.load(f)
# Loads the user's current question — this is the first question that the user has not made any progress on.
def load_current_question():
global current_question
q_index = user_data["current"]
if q_index >= len(all_questions):
print("Done")
gr.Info("You've finished — thank you so much! There are no more questions. :)")
current_question = {"question": "You're done! Thanks so much for your help.", "answers": ["I want to log out now.", "I want to keep answering questions.","I want to keep answering questions.", "I want to keep answering questions."], "correct_answer_index": 0, "top10_e5": ["You're done; thank you!", "You're done; thank you!", "You're done; thank you!", "You're done; thank you!", "You're done; thank you!", "You're done; thank you!", "You're done; thank you!", "You're done; thank you!", "You're done; thank you!", "You're done; thank you!"], "generation_e5": "I don't know how to exit this code right now, so you're in an endless loop of this question until you quit.", "top10_colbert": ["You're done; thank you!", "You're done; thank you!", "You're done; thank you!", "You're done; thank you!", "You're done; thank you!", "You're done; thank you!", "You're done; thank you!", "You're done; thank you!", "You're done; thank you!", "You're done; thank you!"], "generation_colbert": "I don't know how to exit this code right now, so you're in an endless loop of this question until you quit.", "top10_contains_gold_passage": False, "gold_passage": "GOLD PASSAGE: LOG OFF!", "gold_passage_generation": "what do you gain"}
reset_current_response("USER FINISHED")
else:
qid = user_data["order"][q_index]
current_question = all_questions[qid]
reset_current_response(user_data["order"][q_index])
# THEMING: colors and styles (Gradio native)
theme = gr.themes.Soft(
primary_hue="sky",
secondary_hue="sky",
neutral_hue="slate",
font=[gr.themes.GoogleFont('Inter'), 'ui-sans-serif', 'system-ui', 'sans-serif'],
)
# BLOCKS: main user interface
with gr.Blocks(theme = theme) as user_eval:
# Title text introducing study
forward_btn = gr.Textbox("unchanged", visible = False, elem_id = "togglebutton") # used for toggling windows
gr.HTML("""
<h1> Legal Retriever Evaluation Study </h1>
<p> Score the passages based on the question and provided answer choices. Detailed instructions are found <a href="https://docs.google.com/document/d/1ReODJ0hlXz_M3kE2UG1cwSRVoyDLQo88OvG71Gt8lUQ/edit?usp=sharing" target="_blank">here</a>. </p>
""")
gr.Markdown("---")
# Passages and user evaluations thereof
with gr.Row(equal_height = False, visible = False) as evals:
# Passage text
with gr.Column(scale = 2) as passages:
selection = gr.HTML()
"""
selection = gr.HTML("
<h2> Retrieved Passage </h2>
<p> " + current_question["top10_" + user_data["modes"][user_data["current"]][mode]][0] + "</p>")
"""
print(step)
line = gr.Markdown("---")
# New answers is able to render the Q and A with formatting. It doesn't change the contents of the answers.
# new_answers = current_question["answers"].copy()
# new_answers[current_question["correct_answer_index"]] = "**" + current_question["answers"][current_question["correct_answer_index"]] + "** ✅"
passage_display = gr.Markdown()
temp = """
## Question and Answer
"""
# Scoring box
with gr.Column(scale = 1) as scores_p:
desc_0 = gr.Markdown("Does the passage describe **a legal rule or principle?**")
eval_0 = gr.Radio(["Yes", "No"], label = "Legal Rule?")
desc_1 = gr.Markdown("How **relevant** is this passage to the question?")
eval_1 = gr.Slider(1, 5, step = 0.5, label = "Relevance", value = 3)
desc_2 = gr.Markdown("How would you rate the passage's **quality** in terms of detail, clarity, and focus?")
eval_2 = gr.Slider(1, 5, step = 0.5, label = "Quality", value = 3)
desc_3 = gr.Markdown("How effectively does the passage **lead you to the correct answer?**")
eval_3 = gr.Slider(-2, 2, step = 0.5, label = "Helpfulness", value = 0)
btn_p = gr.Button("Next", interactive = False)
# Users must enter in a yes/no value before moving on in the radio area
def sanitize_score(rad):
if rad == None:
return {btn_p: gr.Button(interactive = False)}
else:
return {btn_p: gr.Button(interactive = True)}
eval_0.change(fn = sanitize_score, inputs = [eval_0], outputs = [btn_p])
with gr.Column(scale = 1, visible = False) as scores_g:
helps = gr.Markdown("Does this information **help answer** the question?")
eval_helps = gr.Slider(-2, 2, step = 0.5, label = "Helpfulness", value = 0)
satisfied = gr.Markdown("How **satisfied** are you by this answer?")
eval_satisfied = gr.Slider(1, 5, step = 0.5, label = "User Satisfaction", value = 3)
btn_g = gr.Button("Next")
def next_p(e0, e1, e2, e3):
global step
global mode
global current_response
step += 1
# Add user data to the current response
current_response[user_data["modes"][user_data["current"]][mode] + "_scores"].append([e0, e1, e2, e3])
# Next item
if step == len(current_question["top10_" + user_data["modes"][user_data["current"]][mode]]): # should always be 10
# Step 10: all sources
collapsible_string = "<h2> Set of Passages </h2>\n"
for i, passage in enumerate(current_question["top10_" + user_data["modes"][user_data["current"]][mode]]):
collapsible_string += """
<strong>Passage """ + str(i + 1) + """</strong>
<p> """ + passage + """ </p>
"""
return {
selection: gr.HTML(collapsible_string),
scores_p: gr.Column(visible = False),
scores_g: gr.Column(visible = True),
eval_0: gr.Radio(value = None),
eval_1: gr.Slider(value = 3),
eval_2: gr.Slider(value = 3),
eval_3: gr.Slider(value = 0)
}
else:
return {
selection: gr.HTML("""
<h2> Retrieved Passage </h2>
<p> """ + current_question["top10_" + user_data["modes"][user_data["current"]][mode]][step] + "</p>"),
eval_0: gr.Radio(value = None),
eval_1: gr.Slider(value = 3),
eval_2: gr.Slider(value = 3),
eval_3: gr.Slider(value = 0)
}
def next_g(e_h, e_s):
global step
global mode
global user_data
global current_response
step += 1
if step == 11:
# Step 11: guaranteed to be generation
# Add user data to the current response as SET evaluation, which comes before the generation
current_response[user_data["modes"][user_data["current"]][mode] + "_set"] = [e_h, e_s]
return {
selection: gr.HTML("""
<h2> Autogenerated Response </h2>
<p>""" + markdown(current_question["generation_" + user_data["modes"][user_data["current"]][mode]]) + "</p>"),
eval_helps: gr.Slider(value = 0),
eval_satisfied: gr.Slider(value = 3)
}
# Steps 12 and 13 are gold passage + gold passage generation IF it is applicable
if step > 11: # and not current_question["top10_contains_gold_passage"]
# When mode is 0 -> reset with mode = 1
if mode == 0:
# The user just evaluated a generation for mode 0
current_response[user_data["modes"][user_data["current"]][mode] + "_generation"] = [e_h, e_s]
return {
selection: gr.HTML("""
<h2> Retrieved Passage </h2>
<p> """ + current_question["top10_" + user_data["modes"][user_data["current"]][1]][0] + "</p>"), # hard coded: first passage (0) of mode 2 (1),
forward_btn: gr.Textbox("load new data"),
eval_helps: gr.Slider(value = 0),
eval_satisfied: gr.Slider(value = 3)
}
# When mode is 1 -> display GP and GP generation, then switch
if step == 12:
# The user just evaluated a generation for mode 1
current_response[user_data["modes"][user_data["current"]][mode] + "_generation"] = [e_h, e_s]
return {
selection: gr.HTML("""
<h2> Retrieved Passage </h2>
<p> """ + current_question["gold_passage"] + "</p>"),
forward_btn: gr.Textbox(),
eval_helps: gr.Slider(value = 0),
eval_satisfied: gr.Slider(value = 3)
}
elif step == 13:
# The user just evaluated the gold passage
current_response["gold_set"] = [e_h, e_s]
return {
selection: gr.HTML("""
<h2> Autogenerated Response </h2>
<p> """ + markdown(current_question["gold_passage_generation"]) + "</p>"),
forward_btn: gr.Textbox(),
eval_helps: gr.Slider(value = 0),
eval_satisfied: gr.Slider(value = 3)
}
else: # step = 14
# The user just evaluated the gold passage generation
current_response["gold_generation"] = [e_h, e_s]
user_data["current"] += 1
user_data["responses"].append(current_response) # adds new answers to current list of responses
update_huggingface(user_id) # persistence — update progress online, save answers
load_current_question()
return {
selection: gr.Markdown("Advancing to the next question..."),
forward_btn: gr.Textbox("changed"),
eval_helps: gr.Slider(value = 0),
eval_satisfied: gr.Slider(value = 3)
}
# VERY UNCLEAN CODE: for practical purposes, this else block is unreachable: not current_question["top10_contains_gold_passage"] will always be True
"""
else:
# When mode is 0 -> reset with mode = 1
if mode == 0:
return {
selection: gr.HTML(\"""
<h2> Retrieved Passage </h2>
<p> \""" + current_question["top10_" + user_data["modes"][user_data["current"]][1]][0] + "</p>"), # hard coded: first passage (0) of mode 2 (1)
forward_btn: gr.Textbox("load new data"),
eval_helps: gr.Slider(value = 1),
eval_satisfied: gr.Slider(value = 1)
}
# When mode is 1 -> change question
user_data["current"] += 1
user_data["responses"].append(current_response) # adds new answers to current list of responses
# Update stored data with new current, additional data
update_huggingface(user_id)
load_current_question()
return {
selection: gr.Markdown("Advancing to the next question..."),
forward_btn: gr.Textbox("changed"),
eval_helps: gr.Slider(value = 1),
eval_satisfied: gr.Slider(value = 1)
}
"""
btn_p.click(fn = next_p, inputs = [eval_0, eval_1, eval_2, eval_3], outputs = [selection, scores_p, scores_g, eval_0, eval_1, eval_2, eval_3])
btn_g.click(fn = next_g, inputs = [eval_helps, eval_satisfied], outputs = [selection, forward_btn, eval_helps, eval_satisfied])
# Question and answering dynamics
with gr.Row(equal_height = False, visible = False) as question:
with gr.Column():
gr.Markdown("**Question**")
q_text = gr.Markdown("Question")
a = gr.Button("A")
b = gr.Button("B")
c = gr.Button("C")
d = gr.Button("D")
# I know this is inefficient...
def answer_a():
global current_response
current_response["user_answer"] = 0
return {
question: gr.Row(visible = False),
evals: gr.Row(visible = True)
}
def answer_b():
global current_response
current_response["user_answer"] = 1
return {
question: gr.Row(visible = False),
evals: gr.Row(visible = True)
}
def answer_c():
global current_response
current_response["user_answer"] = 2
return {
question: gr.Row(visible = False),
evals: gr.Row(visible = True)
}
def answer_d():
global current_response
current_response["user_answer"] = 3
return {
question: gr.Row(visible = False),
evals: gr.Row(visible = True)
}
a.click(fn = answer_a, outputs = [question, evals])
b.click(fn = answer_b, outputs = [question, evals])
c.click(fn = answer_c, outputs = [question, evals])
d.click(fn = answer_d, outputs = [question, evals])
def toggle():
global step
global mode
step = 0
if mode == 0:
mode = 1 # update mode to 1, will restart with same Q, next set of Ps
print("Next set of passages for same question")
return {
scores_p: gr.Column(visible = True),
scores_g: gr.Column(visible = False),
evals: gr.Row(visible = True),
question: gr.Row(visible = False),
}
else:
mode = 0 # reset mode to 0, will restart with new Q (set up new Q), first set of Ps
print("New question")
new_answers = current_question["answers"].copy()
new_answers[current_question["correct_answer_index"]] = "**" + current_question["answers"][current_question["correct_answer_index"]] + "** ✅"
return {
scores_p: gr.Column(visible = True),
scores_g: gr.Column(visible = False),
evals: gr.Row(visible = False),
question: gr.Row(visible = True),
q_text: gr.Markdown(current_question["question"]),
a: gr.Button(current_question["answers"][0]),
b: gr.Button(current_question["answers"][1]),
c: gr.Button(current_question["answers"][2]),
d: gr.Button(current_question["answers"][3]),
passage_display: gr.Markdown("""
## Question and Answer
*""" + current_question["question"] +
"""* \n
+ """ + new_answers[0] +
""" \n
+ """ + new_answers[1] +
""" \n
+ """ + new_answers[2] +
""" \n
+ """ + new_answers[3]),
selection: gr.HTML("""
<h2> Retrieved Passage </h2>
<p> """ + current_question["top10_" + user_data["modes"][user_data["current"]][mode]][0] + "</p>")
}
forward_btn.change(fn = toggle, inputs = None, outputs = [scores_p, scores_g, evals, question, q_text, a, b, c, d, passage_display, selection])
with gr.Row() as login:
with gr.Column():
gr.Markdown("# Enter email to start")
gr.Markdown("Thank you so much for your participation in our study! We're using emails to keep track of which questions you've answered and which you haven't seen. Use the same email every time to keep your progress saved. :)")
email = gr.Textbox(label = "Email", placeholder = "[email protected]")
s = gr.Button("Start!", interactive = False)
def sanitize_login(text):
if text == "":
return {s: gr.Button(interactive = False)}
else:
return {s: gr.Button(interactive = True)}
email.change(fn = sanitize_login, inputs = [email], outputs = [s])
def submit_email(email):
global user_id
user_id = email
load_user_data(user_id) # calls login, downloads data, initializes session
# After loading user data, update with current question
load_current_question()
new_answers = current_question["answers"].copy()
new_answers[current_question["correct_answer_index"]] = "**" + current_question["answers"][current_question["correct_answer_index"]] + "** ✅"
return {
question: gr.Row(visible = True),
login: gr.Row(visible = False),
selection: gr.HTML("""
<h2> Retrieved Passage </h2>
<p> """ + current_question["top10_" + user_data["modes"][user_data["current"]][mode]][0] + "</p>"),
passage_display: gr.Markdown("""
## Question and Answer
*""" + current_question["question"] +
"""* \n
+ """ + new_answers[0] +
""" \n
+ """ + new_answers[1] +
""" \n
+ """ + new_answers[2] +
""" \n
+ """ + new_answers[3]),
q_text: gr.Markdown(current_question["question"]),
a: gr.Button(current_question["answers"][0]),
b: gr.Button(current_question["answers"][1]),
c: gr.Button(current_question["answers"][2]),
d: gr.Button(current_question["answers"][3])
}
s.click(fn = submit_email, inputs = [email], outputs = [question, login, selection, passage_display, q_text, a, b, c, d])
# Starts on question, switches to evaluation after the user answers
user_eval.launch()
# https://github.com/gradio-app/gradio/issues/5791 |