Spaces:
Sleeping
Sleeping
File size: 15,697 Bytes
bf75d52 3603153 bf75d52 c20f0de a425fa9 895a686 c20f0de 895a686 3603153 895a686 c20f0de 895a686 c20f0de 895a686 c20f0de a425fa9 d919aa0 919be7b c20f0de d460b8a 711dc9d d919aa0 bf75d52 711dc9d d919aa0 22f31fd 560782b d919aa0 d5c3c24 919be7b d919aa0 5053d22 d919aa0 028b757 31d31bd c20f0de 8f41051 80eb545 c20f0de d919aa0 f4facc1 c20f0de f2c0ef6 80eb545 c40bc82 80eb545 c40bc82 80eb545 c40bc82 80eb545 85f3be6 5053d22 f4facc1 8ac2e2e dc4c04d fb39ca3 dc4c04d fb39ca3 dc4c04d fb39ca3 dc4c04d e525095 d5c3c24 e525095 f4facc1 d460b8a d201c51 ff144c6 796ea23 22f31fd 796ea23 ff144c6 c20f0de 260fa64 7c3fd9a c20f0de e7103e4 2b0e5c7 e7103e4 796ea23 e7103e4 d201c51 9b16238 d5c3c24 796ea23 f583e02 c20f0de 9b16238 d5c3c24 796ea23 d201c51 505427d 260fa64 22f31fd 260fa64 505427d 260fa64 22f31fd 260fa64 f583e02 c20f0de 505427d 260fa64 c20f0de 22f31fd 505427d 22f31fd 260fa64 7493d62 f583e02 c20f0de 505427d 260fa64 6c36dd2 260fa64 7493d62 f583e02 c20f0de 505427d 6c36dd2 22f31fd 505427d 260fa64 22f31fd 505427d 22f31fd 260fa64 22f31fd 505427d 260fa64 cff96fa 505427d d919aa0 8ac2e2e c20f0de 8ac2e2e 5338729 95cc5b2 22f31fd 95cc5b2 0d8264c 95cc5b2 8ac2e2e 22f31fd 7493d62 8ac2e2e 0d8264c dc4c04d a73219f f14dfb1 8ac2e2e c20f0de 8ac2e2e d919aa0 89443f0 a9fe74f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 |
import gradio as gr
import os
# PERSISTENT DATA STORAGE: this code is used to make commits
import json
from datetime import datetime
from pathlib import Path
from uuid import uuid4
from huggingface_hub import CommitScheduler, hf_hub_download, file_exists, HfApi
from random import shuffle
JSON_DATASET_DIR = Path("json_dataset")
JSON_DATASET_DIR.mkdir(parents=True, exist_ok=True)
JSON_DATASET_PATH = JSON_DATASET_DIR / f"train-{uuid4()}.json"
scheduler = CommitScheduler(
repo_id="ebrowne/test-data",
repo_type="dataset",
folder_path=JSON_DATASET_DIR,
path_in_repo="data",
token = os.getenv("HF_TOKEN")
)
# Global variables which interact with loading and unloading
user_data = {}
current_response = {}
current_question = {} # read-only within gradio blocks
user_id = "no_id"
qIDs = ["mbe_46", "mbe_132", "mbe_287", "mbe_326", "mbe_334", "mbe_389", "mbe_563", "mbe_614", "mbe_642", "mbe_747", "mbe_779", "mbe_826", "mbe_845", "mbe_1042", "mbe_1134"]
mode_options = ["e5", "colbert"]
def load_user_data(id):
global user_data
filename = id.replace('@', '_AT_').replace('.', '_DOT_')
if file_exists("ebrowne/test-data", "users/" + filename + ".json"):
print("File exists, downloading data.")
# If the ID exists, download the file from HuggingFace
hf_hub_download(repo_id="ebrowne/test-data", token = os.getenv("HF_TOKEN"), filename="users/" + filename + ".json")
# Add their current status to user_data
else:
# If the ID doesn't exist, create a format for the file and upload it to HuggingFace
shuffle(qIDs)
modes = []
for i in range(len(qIDs)):
temp = mode_options[:]
shuffle(temp)
modes.append(temp)
# This is the format for a user's file on HuggingFace
user_data = {
"user_id": id, # original in email format, which was passed here
"order": qIDs, # randomized order for each user
"modes": modes, # randomized order for each user
"current": 0, # user starts on first question
"responses": [] # formatted as a list of current_responses
}
# Run the update method to upload the new JSON file to HuggingFace
update_huggingface(id)
def update_huggingface(id):
global user_data
filename = id.replace('@', '_AT_').replace('.', '_DOT_')
# Create a local file that will be uploaded to HuggingFace
with open(filename + ".json", "w") as f:
json.dump(user_data, f)
# Upload to hub (overwriting existing files...)
api = HfApi()
api.upload_file(
path_or_fileobj=filename + ".json",
path_in_repo="users/" + filename + ".json",
repo_id="ebrowne/test-data",
repo_type="dataset",
token = os.getenv("HF_TOKEN")
)
def reset_current_response():
global current_response
current_response = {
"user_id": user_id,
"question_id": "QID",
"user_answer": 0,
"e5_scores": [], # list of ten [score, score, score, score]
"e5_set": [], # two values
"e5_generation": [], # two values
"colbert_scores": [],
"colbert_set": [],
"colbert_generation": [],
"gold_set": [],
"gold_generation": []
}
# This method is being used to save each set of individual scores (in case the main files have issues, the data should be saved)
def commit_current_and_reset():
with scheduler.lock:
with JSON_DATASET_PATH.open("a") as f:
json.dump(current_response, f)
f.write("\n")
reset_current_response()
# VARIABLES: will eventually be loaded with JSON from a dataset
with open("example.json", "r") as f:
current_question = json.load(f)
# THEMING: colors and styles (Gradio native)
theme = gr.themes.Soft(
primary_hue="sky",
secondary_hue="sky",
neutral_hue="slate",
font=[gr.themes.GoogleFont('Inter'), 'ui-sans-serif', 'system-ui', 'sans-serif'],
)
# BLOCKS: main user interface
with gr.Blocks(theme = theme) as user_eval:
# Title text introducing study
forward_btn = gr.Textbox("unchanged", visible = False, elem_id = "togglebutton") # used for toggling windows
gr.HTML("""
<h1> Legal Retriever Evaluation Study </h1>
<p> Score the passages based on the question and provided answer choices. Detailed instructions are found <a href="https://docs.google.com/document/d/1ReODJ0hlXz_M3kE2UG1cwSRVoyDLQo88OvG71Gt8lUQ/edit?usp=sharing" target="_blank">here</a>. </p>
""")
gr.Markdown("---")
# Passages and user evaluations thereof
with gr.Row(equal_height = False, visible = False) as evals:
# Passage text
with gr.Column(scale = 2) as passages:
selection = gr.HTML("""
<h2> Retrieved Passage </h2>
<p> """ + current_question["top10_" + user_data["modes"][user_data["current"]][mode]][0] + "</p>")
line = gr.Markdown("---")
# New answers is able to render the Q and A with formatting. It doesn't change the contents of the answers.
new_answers = current_question["answers"].copy()
new_answers[current_question["correct_answer_index"]] = "**" + current_question["answers"][current_question["correct_answer_index"]] + "** ✅"
passage_display = gr.Markdown("""
## Question and Answer
*""" + current_question["question"] +
"""* \n
+ """ + new_answers[0] +
""" \n
+ """ + new_answers[1] +
""" \n
+ """ + new_answers[2] +
""" \n
+ """ + new_answers[3])
# Scoring box
with gr.Column(scale = 1) as scores_p:
desc_0 = gr.Markdown("Does the passage describe **a legal rule?**")
eval_0 = gr.Radio(["Yes", "No"], label = "Legal Rule?")
desc_1 = gr.Markdown("How **relevant** is this passage to the question?")
eval_1 = gr.Slider(1, 5, step = 0.5, label = "Relevance")
desc_2 = gr.Markdown("How would you rate the passage's **quality** in terms of detail, clarity, and focus?")
eval_2 = gr.Slider(1, 5, step = 0.5, label = "Quality")
desc_3 = gr.Markdown("How effectively does the passage **lead you to the correct answer?**")
eval_3 = gr.Slider(1, 5, step = 0.5, label = "Helpfulness")
btn_p = gr.Button("Next", interactive = False)
# Users must enter in a yes/no value before moving on in the radio area
def sanitize_score(rad):
if rad == None:
return {btn_p: gr.Button(interactive = False)}
else:
return {btn_p: gr.Button(interactive = True)}
eval_0.change(fn = sanitize_score, inputs = [eval_0], outputs = [btn_p])
with gr.Column(scale = 1, visible = False) as scores_g:
helps = gr.Markdown("Does this information **help answer** the question?")
eval_helps = gr.Slider(1, 5, step = 0.5, label = "Helpfulness")
satisfied = gr.Markdown("How **satisfied** are you by this answer?")
eval_satisfied = gr.Slider(1, 5, step = 0.5, label = "User Satisfaction")
btn_g = gr.Button("Next")
def next_p(e0, e1, e2, e3):
global step
global mode
step += 1
print(e0)
print(e1 + e2 + e3)
if step == len(current_question["top10_" + user_data["modes"][user_data["current"]][mode]]): # should always be 10
# Step 10: all sources
collapsible_string = ""
for i, passage in enumerate(current_question["top10_" + user_data["modes"][user_data["current"]][mode]]):
collapsible_string += """
<strong>Passage """ + str(i + 1) + """</strong>
<p> """ + passage + """ </p>
"""
return {
selection: gr.HTML(collapsible_string),
scores_p: gr.Column(visible = False),
scores_g: gr.Column(visible = True),
eval_0: gr.Radio(value = None),
eval_1: gr.Slider(value = 3),
eval_2: gr.Slider(value = 3),
eval_3: gr.Slider(value = 3)
}
else:
return {
selection: gr.HTML("""
<h2> Retrieved Passage </h2>
<p> """ + current_question["top10_" + user_data["modes"][user_data["current"]][mode]][step] + "</p>"),
eval_0: gr.Radio(value = None),
eval_1: gr.Slider(value = 3),
eval_2: gr.Slider(value = 3),
eval_3: gr.Slider(value = 3)
}
def next_g(e_h, e_s):
global step
global mode
step += 1
print(e_h + e_s)
if step == 11:
# Step 11: guaranteed to be generation
return {
selection: gr.HTML("""
<h2> Autogenerated Response </h2>
<p> """ + current_question["generation_" + user_data["modes"][user_data["current"]][mode]] + "</p>"),
eval_helps: gr.Slider(value = 1),
eval_satisfied: gr.Slider(value = 1)
}
# Steps 12 and 13 are gold passage + gold passage generation IF it is applicable
if step > 11 and not current_question["top10_contains_gold_passage"]:
# When mode is 0 -> reset with mode = 1
if mode == 0:
return {
selection: gr.HTML("<p> Loading second set... </p>") ,
forward_btn: gr.Textbox("load new data"),
eval_helps: gr.Slider(value = 1),
eval_satisfied: gr.Slider(value = 1)
}
# When mode is 1 -> display GP and GP generation, then switch
if step == 12:
return {
selection: gr.HTML("""
<h2> Retrieved Passage </h2>
<p> """ + current_question["gold_passage"] + "</p>"),
forward_btn: gr.Textbox(),
eval_helps: gr.Slider(value = 1),
eval_satisfied: gr.Slider(value = 1)
}
elif step == 13:
return {
selection: gr.HTML("""
<h2> Autogenerated Response </h2>
<p> """ + current_question["gold_passage_generation"] + "</p>"),
forward_btn: gr.Textbox(),
eval_helps: gr.Slider(value = 1),
eval_satisfied: gr.Slider(value = 1)
}
else:
return {
selection: gr.Markdown("Advancing to the next question..."),
forward_btn: gr.Textbox("changed"),
eval_helps: gr.Slider(value = 1),
eval_satisfied: gr.Slider(value = 1)
}
else:
# When mode is 0 -> reset with mode = 1
if mode == 0:
return {
selection: gr.HTML("<p> Loading second set... </p>") ,
forward_btn: gr.Textbox("load new data"),
eval_helps: gr.Slider(value = 1),
eval_satisfied: gr.Slider(value = 1)
}
# When mode is 1 -> change question
return {
selection: gr.Markdown("Advancing to the next question..."),
forward_btn: gr.Textbox("changed"),
eval_helps: gr.Slider(value = 1),
eval_satisfied: gr.Slider(value = 1)
}
btn_p.click(fn = next_p, inputs = [eval_0, eval_1, eval_2, eval_3], outputs = [selection, scores_p, scores_g, eval_0, eval_1, eval_2, eval_3])
btn_g.click(fn = next_g, inputs = [eval_helps, eval_satisfied], outputs = [selection, forward_btn, eval_helps, eval_satisfied])
# Question and answering dynamics
with gr.Row(equal_height = False, visible = False) as question:
with gr.Column():
gr.Markdown("**Question**")
gr.Markdown(current_question["question"])
a = gr.Button(current_question["answers"][0])
b = gr.Button(current_question["answers"][1])
c = gr.Button(current_question["answers"][2])
d = gr.Button(current_question["answers"][3])
def answer():
return {
question: gr.Row(visible = False),
evals: gr.Row(visible = True)
}
a.click(fn = answer, outputs = [question, evals])
b.click(fn = answer, outputs = [question, evals])
c.click(fn = answer, outputs = [question, evals])
d.click(fn = answer, outputs = [question, evals])
def toggle():
global step
global mode
step = 0
if mode == 0:
mode = 1 # update mode to 1, will restart with same Q, next set of Ps
print("Next set of passages for same question")
return {
scores_p: gr.Column(visible = True),
scores_g: gr.Column(visible = False),
evals: gr.Row(visible = True),
question: gr.Row(visible = False),
}
else:
mode = 0 # reset mode to 0, will restart with new Q, first set of Ps
print("New question")
return {
scores_p: gr.Column(visible = True),
scores_g: gr.Column(visible = False),
evals: gr.Row(visible = False),
question: gr.Row(visible = True),
}
forward_btn.change(fn = toggle, inputs = None, outputs = [scores_p, scores_g, evals, question])
with gr.Row() as login:
with gr.Column():
gr.Markdown("# Enter email to start")
gr.Markdown("Thank you so much for your participation in our study! We're using emails to keep track of which questions you've answered and which you haven't seen. Use the same email every time to keep your progress saved. :)")
email = gr.Textbox(label = "Email", placeholder = "[email protected]")
s = gr.Button("Start!", interactive = False)
def sanitize_login(text):
if text == "":
return {s: gr.Button(interactive = False)}
else:
return {s: gr.Button(interactive = True)}
email.change(fn = sanitize_login, inputs = [email], outputs = [s])
def submit_email(email):
global user_id
user_id = email
load_user_data(user_id) # calls login, downloads data, initializes session
return {
question: gr.Row(visible = True),
login: gr.Row(visible = False)
}
s.click(fn = submit_email, inputs = [email], outputs = [question, login])
# Starts on question, switches to evaluation after the user answers
user_eval.launch()
# https://github.com/gradio-app/gradio/issues/5791 |