Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
update
Browse files- app.py +202 -133
- assets/cat.jpeg +0 -0
- assets/holding_phone.mp4 +3 -0
- style.css +4 -0
app.py
CHANGED
@@ -1,177 +1,246 @@
|
|
1 |
-
import
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
TextIteratorStreamer,
|
6 |
-
)
|
7 |
from threading import Thread
|
8 |
-
import re
|
9 |
-
import time
|
10 |
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
from optimum.intel import OVModelForVisualCausalLM
|
12 |
|
13 |
-
|
14 |
# model_id = "echarlaix/SmolVLM2-2.2B-Instruct-openvino"
|
15 |
-
|
16 |
-
model_id = "echarlaix/SmolVLM2-500M-Video-Instruct-openvino"
|
17 |
|
18 |
processor = AutoProcessor.from_pretrained(model_id)
|
19 |
model = OVModelForVisualCausalLM.from_pretrained(model_id)
|
20 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
else:
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
parts = re.split(r"(<image>|<video>)", text)
|
69 |
-
|
70 |
-
for part in parts:
|
71 |
-
if part == "<image>" and media_queue:
|
72 |
-
user_content.append(media_queue.pop(0))
|
73 |
-
elif part == "<video>" and media_queue:
|
74 |
-
user_content.append(media_queue.pop(0))
|
75 |
-
elif part.strip():
|
76 |
-
user_content.append({"type": "text", "text": part.strip()})
|
77 |
-
|
78 |
-
elif hist["role"] == "assistant":
|
79 |
-
resulting_messages.append({"role": "user", "content": user_content})
|
80 |
-
resulting_messages.append(
|
81 |
-
{
|
82 |
-
"role": "assistant",
|
83 |
-
"content": [{"type": "text", "text": hist["content"]}],
|
84 |
-
}
|
85 |
-
)
|
86 |
-
user_content = []
|
87 |
-
|
88 |
-
if text == "" and not images:
|
89 |
-
gr.Error("Please input a query and optionally image(s).")
|
90 |
-
|
91 |
-
if text == "" and images:
|
92 |
-
gr.Error("Please input a text query along the images(s).")
|
93 |
-
# print("resulting_messages", resulting_messages)
|
94 |
inputs = processor.apply_chat_template(
|
95 |
-
|
96 |
add_generation_prompt=True,
|
97 |
tokenize=True,
|
98 |
return_dict=True,
|
99 |
return_tensors="pt",
|
100 |
)
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
105 |
)
|
106 |
-
|
107 |
-
|
108 |
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
buffer = ""
|
114 |
-
|
115 |
-
for new_text in streamer:
|
116 |
-
buffer += new_text
|
117 |
-
# generated_text_without_prompt = buffer#[len(ext_buffer):]
|
118 |
-
time.sleep(0.01)
|
119 |
-
yield buffer
|
120 |
|
121 |
|
122 |
examples = [
|
123 |
[
|
124 |
{
|
125 |
-
"text": "
|
126 |
-
"files": [
|
127 |
-
}
|
128 |
-
],
|
129 |
-
[
|
130 |
-
{
|
131 |
-
"text": "What art era this artpiece <image> and this artpiece <image> belong to?",
|
132 |
-
"files": ["example_images/rococo.jpg", "example_images/rococo_1.jpg"],
|
133 |
-
}
|
134 |
-
],
|
135 |
-
[ {
|
136 |
-
"text": "Describe this image.",
|
137 |
-
"files": ["example_images/mosque.jpg"]
|
138 |
-
}
|
139 |
-
],
|
140 |
-
[
|
141 |
-
{
|
142 |
-
"text": "When was this purchase made and how much did it cost?",
|
143 |
-
"files": ["example_images/fiche.jpg"],
|
144 |
}
|
145 |
],
|
146 |
[
|
147 |
{
|
148 |
-
"text": "
|
149 |
-
"files": ["
|
150 |
}
|
151 |
],
|
152 |
[
|
153 |
{
|
154 |
-
"text": "
|
155 |
-
"files": ["
|
156 |
}
|
157 |
],
|
158 |
]
|
|
|
159 |
demo = gr.ChatInterface(
|
160 |
-
fn=
|
161 |
-
|
162 |
-
description="Play with [SmolVLM2-2.2B-Instruct](https://huggingface.co/HuggingFaceTB/SmolVLM2-2.2B-Instruct) in this demo. To get started, upload an image and text or try one of the examples. This demo doesn't use history for the chat, so every chat you start is a new conversation.",
|
163 |
-
examples=examples,
|
164 |
textbox=gr.MultimodalTextbox(
|
165 |
-
|
|
|
|
|
166 |
),
|
167 |
-
stop_btn="Stop Generation",
|
168 |
multimodal=True,
|
169 |
-
cache_examples=False,
|
170 |
additional_inputs=[
|
171 |
-
gr.
|
|
|
172 |
],
|
173 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
174 |
)
|
175 |
|
|
|
|
|
|
|
176 |
|
177 |
-
demo.launch(debug=True)
|
|
|
1 |
+
import os
|
2 |
+
import pathlib
|
3 |
+
import tempfile
|
4 |
+
from collections.abc import Iterator
|
|
|
|
|
5 |
from threading import Thread
|
|
|
|
|
6 |
|
7 |
+
import av
|
8 |
+
import gradio as gr
|
9 |
+
import torch
|
10 |
+
from gradio.utils import get_upload_folder
|
11 |
+
from transformers import AutoModelForImageTextToText, AutoProcessor
|
12 |
+
from transformers.generation.streamers import TextIteratorStreamer
|
13 |
from optimum.intel import OVModelForVisualCausalLM
|
14 |
|
|
|
15 |
# model_id = "echarlaix/SmolVLM2-2.2B-Instruct-openvino"
|
16 |
+
model_id = "echarlaix/SmolVLM-256M-Instruct-openvino"
|
17 |
+
# model_id = "echarlaix/SmolVLM2-500M-Video-Instruct-openvino"
|
18 |
|
19 |
processor = AutoProcessor.from_pretrained(model_id)
|
20 |
model = OVModelForVisualCausalLM.from_pretrained(model_id)
|
21 |
|
22 |
+
IMAGE_FILE_TYPES = (".jpg", ".jpeg", ".png", ".webp")
|
23 |
+
VIDEO_FILE_TYPES = (".mp4", ".mov", ".webm")
|
24 |
+
|
25 |
+
GRADIO_TEMP_DIR = get_upload_folder()
|
26 |
+
|
27 |
+
TARGET_FPS = int(os.getenv("TARGET_FPS", "3"))
|
28 |
+
MAX_FRAMES = int(os.getenv("MAX_FRAMES", "30"))
|
29 |
+
MAX_INPUT_TOKENS = int(os.getenv("MAX_INPUT_TOKENS", "10_000"))
|
30 |
+
|
31 |
+
|
32 |
+
def get_file_type(path: str) -> str:
|
33 |
+
if path.endswith(IMAGE_FILE_TYPES):
|
34 |
+
return "image"
|
35 |
+
if path.endswith(VIDEO_FILE_TYPES):
|
36 |
+
return "video"
|
37 |
+
error_message = f"Unsupported file type: {path}"
|
38 |
+
raise ValueError(error_message)
|
39 |
|
40 |
+
|
41 |
+
def count_files_in_new_message(paths: list[str]) -> tuple[int, int]:
|
42 |
+
video_count = 0
|
43 |
+
non_video_count = 0
|
44 |
+
for path in paths:
|
45 |
+
if path.endswith(VIDEO_FILE_TYPES):
|
46 |
+
video_count += 1
|
47 |
+
else:
|
48 |
+
non_video_count += 1
|
49 |
+
return video_count, non_video_count
|
50 |
+
|
51 |
+
|
52 |
+
def validate_media_constraints(message: dict) -> bool:
|
53 |
+
video_count, non_video_count = count_files_in_new_message(message["files"])
|
54 |
+
if video_count > 1:
|
55 |
+
gr.Warning("Only one video is supported.")
|
56 |
+
return False
|
57 |
+
if video_count == 1 and non_video_count > 0:
|
58 |
+
gr.Warning("Mixing images and videos is not allowed.")
|
59 |
+
return False
|
60 |
+
return True
|
61 |
+
|
62 |
+
|
63 |
+
def extract_frames_to_tempdir(
|
64 |
+
video_path: str,
|
65 |
+
target_fps: float,
|
66 |
+
max_frames: int | None = None,
|
67 |
+
parent_dir: str | None = None,
|
68 |
+
prefix: str = "frames_",
|
69 |
+
) -> str:
|
70 |
+
temp_dir = tempfile.mkdtemp(prefix=prefix, dir=parent_dir)
|
71 |
+
|
72 |
+
container = av.open(video_path)
|
73 |
+
video_stream = container.streams.video[0]
|
74 |
+
|
75 |
+
if video_stream.duration is None or video_stream.time_base is None:
|
76 |
+
raise ValueError("video_stream is missing duration or time_base")
|
77 |
+
|
78 |
+
time_base = video_stream.time_base
|
79 |
+
duration = float(video_stream.duration * time_base)
|
80 |
+
interval = 1.0 / target_fps
|
81 |
+
|
82 |
+
total_frames = int(duration * target_fps)
|
83 |
+
if max_frames is not None:
|
84 |
+
total_frames = min(total_frames, max_frames)
|
85 |
+
|
86 |
+
target_times = [i * interval for i in range(total_frames)]
|
87 |
+
target_index = 0
|
88 |
+
|
89 |
+
for frame in container.decode(video=0):
|
90 |
+
if frame.pts is None:
|
91 |
+
continue
|
92 |
+
|
93 |
+
timestamp = float(frame.pts * time_base)
|
94 |
+
|
95 |
+
if target_index < len(target_times) and abs(timestamp - target_times[target_index]) < (interval / 2):
|
96 |
+
frame_path = pathlib.Path(temp_dir) / f"frame_{target_index:04d}.jpg"
|
97 |
+
frame.to_image().save(frame_path)
|
98 |
+
target_index += 1
|
99 |
+
|
100 |
+
if max_frames is not None and target_index >= max_frames:
|
101 |
+
break
|
102 |
+
|
103 |
+
container.close()
|
104 |
+
return temp_dir
|
105 |
+
|
106 |
+
|
107 |
+
def process_new_user_message(message: dict) -> list[dict]:
|
108 |
+
if not message["files"]:
|
109 |
+
return [{"type": "text", "text": message["text"]}]
|
110 |
+
|
111 |
+
file_types = [get_file_type(path) for path in message["files"]]
|
112 |
+
|
113 |
+
if len(file_types) == 1 and file_types[0] == "video":
|
114 |
+
gr.Info(f"Video will be processed at {TARGET_FPS} FPS, max {MAX_FRAMES} frames in this Space.")
|
115 |
+
|
116 |
+
temp_dir = extract_frames_to_tempdir(
|
117 |
+
message["files"][0],
|
118 |
+
target_fps=TARGET_FPS,
|
119 |
+
max_frames=MAX_FRAMES,
|
120 |
+
parent_dir=GRADIO_TEMP_DIR,
|
121 |
+
)
|
122 |
+
paths = sorted(pathlib.Path(temp_dir).glob("*.jpg"))
|
123 |
+
return [
|
124 |
+
{"type": "text", "text": message["text"]},
|
125 |
+
*[{"type": "image", "image": path.as_posix()} for path in paths],
|
126 |
+
]
|
127 |
+
|
128 |
+
return [
|
129 |
+
{"type": "text", "text": message["text"]},
|
130 |
+
*[{"type": file_type, file_type: path} for path, file_type in zip(message["files"], file_types, strict=True)],
|
131 |
+
]
|
132 |
+
|
133 |
+
|
134 |
+
def process_history(history: list[dict]) -> list[dict]:
|
135 |
+
messages = []
|
136 |
+
current_user_content: list[dict] = []
|
137 |
+
for item in history:
|
138 |
+
if item["role"] == "assistant":
|
139 |
+
if current_user_content:
|
140 |
+
messages.append({"role": "user", "content": current_user_content})
|
141 |
+
current_user_content = []
|
142 |
+
messages.append({"role": "assistant", "content": [{"type": "text", "text": item["content"]}]})
|
143 |
else:
|
144 |
+
content = item["content"]
|
145 |
+
if isinstance(content, str):
|
146 |
+
current_user_content.append({"type": "text", "text": content})
|
147 |
+
else:
|
148 |
+
filepath = content[0]
|
149 |
+
file_type = get_file_type(filepath)
|
150 |
+
current_user_content.append({"type": file_type, file_type: filepath})
|
151 |
+
return messages
|
152 |
+
|
153 |
+
|
154 |
+
@torch.inference_mode()
|
155 |
+
def generate(message: dict, history: list[dict], system_prompt: str = "", max_new_tokens: int = 512) -> Iterator[str]:
|
156 |
+
if not validate_media_constraints(message):
|
157 |
+
yield ""
|
158 |
+
return
|
159 |
+
|
160 |
+
messages = []
|
161 |
+
if system_prompt:
|
162 |
+
messages.append({"role": "system", "content": [{"type": "text", "text": system_prompt}]})
|
163 |
+
messages.extend(process_history(history))
|
164 |
+
messages.append({"role": "user", "content": process_new_user_message(message)})
|
165 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
166 |
inputs = processor.apply_chat_template(
|
167 |
+
messages,
|
168 |
add_generation_prompt=True,
|
169 |
tokenize=True,
|
170 |
return_dict=True,
|
171 |
return_tensors="pt",
|
172 |
)
|
173 |
+
n_tokens = inputs["input_ids"].shape[1]
|
174 |
+
if n_tokens > MAX_INPUT_TOKENS:
|
175 |
+
gr.Warning(
|
176 |
+
f"Input too long. Max {MAX_INPUT_TOKENS} tokens. Got {n_tokens} tokens. This limit is set to avoid CUDA out-of-memory errors in this Space."
|
177 |
+
)
|
178 |
+
yield ""
|
179 |
+
return
|
180 |
+
|
181 |
+
# inputs = inputs.to(device=model.device, dtype=torch.bfloat16)
|
182 |
+
|
183 |
+
streamer = TextIteratorStreamer(processor, timeout=30.0, skip_prompt=True, skip_special_tokens=True)
|
184 |
+
generate_kwargs = dict(
|
185 |
+
inputs,
|
186 |
+
streamer=streamer,
|
187 |
+
max_new_tokens=max_new_tokens,
|
188 |
+
do_sample=False,
|
189 |
+
disable_compile=True,
|
190 |
)
|
191 |
+
t = Thread(target=model.generate, kwargs=generate_kwargs)
|
192 |
+
t.start()
|
193 |
|
194 |
+
output = ""
|
195 |
+
for delta in streamer:
|
196 |
+
output += delta
|
197 |
+
yield output
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
198 |
|
199 |
|
200 |
examples = [
|
201 |
[
|
202 |
{
|
203 |
+
"text": "What is the capital of France?",
|
204 |
+
"files": [],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
205 |
}
|
206 |
],
|
207 |
[
|
208 |
{
|
209 |
+
"text": "Describe this image in detail.",
|
210 |
+
"files": ["assets/cat.jpeg"],
|
211 |
}
|
212 |
],
|
213 |
[
|
214 |
{
|
215 |
+
"text": "Describe this video",
|
216 |
+
"files": ["assets/holding_phone.mp4"],
|
217 |
}
|
218 |
],
|
219 |
]
|
220 |
+
|
221 |
demo = gr.ChatInterface(
|
222 |
+
fn=generate,
|
223 |
+
type="messages",
|
|
|
|
|
224 |
textbox=gr.MultimodalTextbox(
|
225 |
+
file_types=list(IMAGE_FILE_TYPES + VIDEO_FILE_TYPES),
|
226 |
+
file_count="multiple",
|
227 |
+
autofocus=True,
|
228 |
),
|
|
|
229 |
multimodal=True,
|
|
|
230 |
additional_inputs=[
|
231 |
+
gr.Textbox(label="System Prompt", value="You are a helpful assistant."),
|
232 |
+
gr.Slider(label="Max New Tokens", minimum=100, maximum=2000, step=10, value=700),
|
233 |
],
|
234 |
+
stop_btn=False,
|
235 |
+
title="OV model",
|
236 |
+
examples=examples,
|
237 |
+
run_examples_on_click=False,
|
238 |
+
cache_examples=False,
|
239 |
+
css_paths="style.css",
|
240 |
+
delete_cache=(1800, 1800),
|
241 |
)
|
242 |
|
243 |
+
if __name__ == "__main__":
|
244 |
+
demo.launch()
|
245 |
+
|
246 |
|
|
assets/cat.jpeg
ADDED
![]() |
assets/holding_phone.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b2a6ae1c4a066dc5d8940069a709c8e8bb63a6d013d4444fec5d34cf94ffd474
|
3 |
+
size 11476815
|
style.css
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
h1 {
|
2 |
+
text-align: center;
|
3 |
+
display: block;
|
4 |
+
}
|